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Abstract

We investigate the legacies of herbicidal warfare on population size and growth in
Vietnam between 2001 and 2020. The identification strategy exploits the flight-level
military records and the plausibly exogenous hamlet-level variation around the spray-
on, direction-change, and spray-off points of fixed-wing aircraft missions, combined
with a fuzzy regression kink design. The elasticity estimate suggests that a 10% increase
in predicted herbicide exposure during the Vietnam War is persistently associated with
a decrease in population size of 1.88-2.51% in 2001 and 2.61-3.27% in 2020. We also
find that a 10% increase in herbicide exposure is associated with a 0.75 percentage-
point decrease in population growth rates over the 2001-2020 period. These findings
reveal previously unseen, lasting legacies of herbicidal warfare on contemporary health
outcomes. The empirical patterns run counter to the conventional wisdom of a rapid
recovery or a catch-up growth in post-war societies from wartime destruction, while
also contributing to the emerging debate over the socioeconomic and public health
consequences of broader chemical exposure.

Word Count: 9,517 words

Keywords: Agent Orange; armed conflict; historical legacies; population; urbaniza-
tion; Vietnam War

*We are grateful for the insightful comments from Erik Lin-Greenberg, Masaaki Higashijima, Keisuke
Kawata, Yoshiaki Kobayashi, Vally Koubi, Adeline Lo, Wakako Maekawa, Junichi Yamazaki, session partic-
ipants of the 2022 Annual Meeting of the American Political Science Association, the 2022 Annual Meeting
of the Japan Society for International Relations, the 2023 Pacific International Politics Conference, and
seminar participants at Hiroshima University, Kyoto University, University of Toyama, and the University
of Tokyo. Financial support from the Japan Society for the Promotion of Science is gratefully acknowledged
(Grant Numbers 23H00039, 24KK0025, and 24K16354). All remaining errors are ours.

t Associate Professor, Graduate School of Economics, Osaka Metropolitan University. 3-3-138 Sug-
imoto, Sumiyoshi, Osaka 558-8585, Japan. FEmail: gaku@omu.ac.jp. 0000-0002-5362-6918. URL:
https://gaku-ito.github.io. Corresponding author.

tAssistant Professor, Global Campus Institute and Graduate School of Integrated Sciences for Life,
Hiroshima University. 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan. Email:
tranduc@hiroshima-u.ac.jp. ® 0000-0002-3443-6510.

SProfessor, School of Economics, Kwansei Gakuin University. 1-155 Uegahara Ichiban-cho, Nishinomiya
662-8501, Japan. Email: yuichiroyoshida@kwansei.ac.jp. ® 0000-0002-3061-4594.


mailto:gaku@omu.ac.jp
https://orcid.org/0000-0002-5362-6918
https://gaku-ito.github.io
mailto:tranduc@hiroshima-u.ac.jp
https://orcid.org/0000-0002-3443-6510
mailto:yuichiroyoshida@kwansei.ac.jp
https://orcid.org/0000-0002-3061-4594

1 Introduction

Does a temporary shock of large-scale violence leave lasting effects on socioeconomic out-
comes? In some instances, exposure to violence persistently depletes human capital and
undermines interpersonal and institutional trust (e.g., Grasse, 2023; Lichter et al., 2020;
Nunn and Wantchekon, 2011). Elsewhere, forms of violence foster political engagement, so-
cial cohesion, and altruistic behavior (e.g., Bauer et al., 2016; Berman et al., 2023; Blattman,
2009). By contrast, several studies also highlight a rapid recovery or a catch-up growth of
economic and population outcomes in post-war societies, with the impact of wartime de-
struction remaining short-lived (e.g., Brakman et al.; 2004; Davis and Weinstein, 2002, 2008;
Miguel and Roland, 2011; but see Bosker et al., 2007).

This article joins the growing literature with new evidence from the herbicide spray in the
Vietnam War. While earlier works highlight a powerful recovery from wartime destruction
(Miguel and Roland, 2011), recent literature finds persistent effects of U.S. bombing on
development and health outcomes in Cambodia (e.g., Lin, 2022), Laos (e.g., Riano and
Caicedo, 2024), and Vietnam (e.g., Palmer et al.,; 2019; Singhal, 2019). Most closely related
to this article, Appau et al. (2021), Le et al. (2022), Yamashita and Trinh (2022), and
Vuong (2024) examine the legacies of herbicidal warfare. For example, Appau et al. (2021)
underline a persistent negative association between the district-level herbicide exposure and
the agricultural productivity, trust levels, and economic production. In a similar vein, Le
et al. (2022) document a commune-level positive association between herbicide exposure and
the immediate and detrimental prevalence of health disease and mobility disability in the
cohort born before the spray mission ended in 1971.

While the existing insights are valuable, a key challenge for causal identification stems
from the commonly used, district- or commune-level geographic aggregation. This is unfor-
tunate, as the distribution of herbicide dispersal is partly a function of plausibly exogenous,
micro-level factors including climate and wind conditions, local geography, and instantaneous

and uncontrollable decision of aircraft pilots besides initial mission plans and intended targets



within geographically-small areas. To illustrate, given the typical airspeed of 240-278 km /h
for spray flights (Darrow et al.; 1969, 26), even a “one-minute” misalignment in the timing of
spray-on/off or changes in direction, which can be triggered by unexpected weather or wind
conditions as well as ground fire, could shift the dispersal patterns by more than four kilome-
ters in an unexpected way. The district-level or commune-level aggregation, with an average
size of 465.31 km? (districts) or 29.6 km? (communes), inevitably masks such micro-level
variation that would be valuable for causal identification." An alternative, straightforward
identification strategy is to leverage the plausibly exogenous micro-level variation, which is
lost in geographically intensive aggregation.

To do so, we combine the fine-grained archival data previously unused at the original,
flight-level scale with a fuzzy regression kink (RK) design to address the identification chal-
lenge arising from the nonrandom nature of historical exposure to herbicide, most notably
Agent Orange, during the Vietnam War. Indeed, historical records suggest that Operation
Ranch Hand (1962-1971) missions intended to prevent directly damaging densely populated
areas and croplands not under Viet Cong control (MACV, 1969), which would invite bias
into naive comparisons. To surmount the identification challenge, our RK strategy leverages
the uncontrollable, natural experimental variation in the hamlet-level exposure to herbicide
around the spray-on, direction-change, and spray-off points of fixed-wing aircraft missions.
To capture the micro-level variation in herbicide missions, we rely on the flight-level records
documented in the Stellman-National Academy of Sciences version of the Herbicide Report
System file (S-NAS HERBS, Stellman et al.; 2003a,b).

The RK analysis reveals lasting legacies of herbicidal warfare such that even after decades,
herbicide exposure during the 1961-1971 period is negatively and systematically associated
with population size and population growth in the present day. The elasticity estimate
suggests that a 10% increase in herbicide exposure, which is observed within a 1 km distance

from the spray start, turn, and end points, is associated with a 2.61-3.27% decrease in

! Assuming a circle of an equivalent area, the oft-employed geographic aggregation masks variations within
a diameter of 2 x 1/465.31 /7 = 24.34 km (districts) and 2 x 1/29.6/7 = 6.14 km (communes).
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population size in 2020. The analysis also reveals negative associations between the herbicide
shock and population growth rate in 2001-2020, and runs counter to the conventional wisdom
of a powerful recovery from wartime destruction in Vietnam (e.g., Miguel and Roland, 2011;
see also, Davis and Weinstein, 2002, 2008). A series of placebo tests and robustness checks
lends further credibility to the findings. While the discrepancy might arise from different
units of analysis and the focus of distinct treatments, the previously unseen patterns run
counter to the conventional wisdom of a powerful recovery from wartime destruction. Besides
the legacies of war, the findings also speak to the growing body of literature on the economic
and health effects of pesticide or chemical usage (e.g., Camacho and Mejia, 2017; Dias et al.,
2023; Frank, 2024).” Collectively, this article offers new insights of the lasting legacies
of herbicidal warfare beyond the established notion of the “forced-draft urbanization and
modernization” in Vietnam (Huntington, 1968, 652). As such, our findings challenge the
existing findings on wartime recovery while contributing to the debate over the socioeconomic
and public health consequences of broader chemical exposure.

The remainder of this article proceeds as follows. The next section reviews the historical
background and related literature. Section 3 details the archival records used for the em-
pirical analysis, followed by the identification strategy and estimation models in Section 4.
Section 5 reports the main findings, along with a summary of the sensitivity analysis and

robustness checks. Section 6 concludes.

2 Lasting Legacies of Chemical Exposure

The military herbicide operations during the Vietnam War represent the largest episode of
chemical-weapon deployment in modern history. Between 1961 and 1971, U.S. forces sprayed
more than 20 million gallons of herbicides across South Vietnam. The primary objective
was the large-scale defoliation of forests and mangroves to deprive Viet Cong insurgents of

natural cover and to improve aerial targeting efficiency. Secondary objectives included the

2We thank an anonymous reviewer for suggesting this body of literature.
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destruction of enemy food supplies and the defoliation of military base perimeters, accounting
for approximately 9% and 2% of total herbicide dispersal, respectively (IoM, 1995, Stellman
and Stellman, 2018). More than 95% of all herbicides were dispersed by the U.S. Air Force
under Operation Ranch Hand, primarily through fixed-wing C-123 aircraft (Stellman et al.,
2003a). Other military branches employed helicopters, boats, trucks, and hand sprayers, but
these accounted for substantially smaller quantities. The composition of herbicides varied
by mission type. Agent Orange, contaminated with the highly toxic and persistent dioxin
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was used most intensively for forest defoliation.

Unlike other herbicide ingredients, TCDD exhibits exceptionally high toxicity. It is chemi-
cally stable, resistant to degradation, and therefore persists in the environment for extended
periods. Due to its strong lipophilicity, TCDD bioaccumulates in human adipose tissue
and biomagnifies within ecosystems. TCDD functions as an endocrine-disrupting chemical
through activation of the aryl hydrocarbon receptor, thereby interfering with hormonal regu-
lation and developmental signaling pathways (IARC, 2012). Epidemiological studies of highly
exposed populations, most notably the Seveso cohort in Italy, demonstrate associations be-
tween elevated TCDD body burdens and impaired reproductive function, adverse pregnancy
outcomes, and long-term increases in cancer incidence (Consonni et al.; 2008; Mocarelli
et al.,, 2000). Prenatal and early-life exposure has also been linked to fetal growth retar-
dation, congenital abnormalities, and neurodevelopmental impairment, supporting TCDD’s
classification as a Group 1 human carcinogen (IARC, 2012).

Given its bioaccumulative and persistent nature, a significant body of research has ex-
amined the long-term health and socioeconomic consequences of dioxin exposure during the
Vietnam War. Early studies focusing primarily on U.S. veterans report associations between
herbicide exposure and cardiovascular disease, cancers, diabetes, Parkinson’s disease, and
adverse reproductive outcomes, although the confidence of the evidence varies considerably
(TIoM, 1995, 6-7; Stellman et al., 1988,). More recent research, situated within the broader

literature on the long-run legacies of war, has shifted attention toward civilian populations in



Vietnam. Beyond the short-term wartime displacement emphasized by Huntington (1968),
these studies document persistent effects decades after the cessation of hostilities. For ex-
ample, Yamashita and Trinh (2020) provide evidence linking herbicide exposure to elevated
cancer incidence and disability among Vietnamese civilians. Using contemporary census
data, Appau et al. (2021) show that district-level herbicide exposure reduced household
agricultural productivity in Vietnam. Le et al. (2022) also find that cohorts born before
the end of the spray missions in 1971 experienced higher disease prevalence and mobility
disability at the commune level.

The literature suggests that military herbicide exposure may generate persistent popu-
lation decline through three main mechanisms. First, direct biological effects can reduce
fertility and increase infant mortality, consistent with evidence from the pesticide literature
documenting impaired reproductive outcomes following chemical exposure (Camacho and
Mejia, 2017; De Araujo et al., 2023). Even modest reductions in cohort size at birth can
cumulate into long-run population losses when exposure is spatially concentrated and per-
sistent. Second, exposure may induce selective migration. Contaminated areas are likely
to experience sustained out-migration and reduced in-migration as households respond to
health risks, environmental degradation, and weakened economic prospects. Evidence linking
herbicide exposure to disability and lower human capital suggests that migration responses
may reinforce initial population losses, generating persistent spatial divergence (Yamashita
and Trinh, 2022). Third, persistent soil contamination may depress agricultural productiv-
ity and farm profitability, reducing the land’s economic carrying capacity. Empirical studies
documenting declines in crop yields and long-term health among working-age cohorts im-
ply that population decline may arise not only through health and migration channels, but
also through structural constraints on local livelihoods (Appau et al., 2021; Le et al.; 2022).
Reduced productivity weakens income generation and food security, further discouraging
settlement and family formation.

Beyond the literature on wartime violence, this study contributes to a broader body of



research on the demographic and health consequences of agrochemical exposure. Although
TCDD entered the environment through military herbicide operations rather than agricul-
tural application, its toxicological properties and modes of action closely resemble those of
several widely studied pesticides. The comparability between TCDD and agricultural pesti-
cides arises from similarities in their mechanisms of action and toxicological characteristics.”
In this sense, wartime dioxin exposure can be viewed as an extreme and historically unique
case of large-scale agrochemical contamination, allowing insights from the pesticide litera-
ture to inform the interpretation of its long-run effects. Evidence from non-conflict settings
indicates that intensive herbicide and pesticide use has substantial and persistent impacts
on population health. Large-scale aerial spraying of glyphosate in Colombia led to sharp
increases in medical consultations and miscarriages (Camacho and Mejia, 2017), while rising
glyphosate application in Brazil significantly increased infant mortality rates (De Araujo
et al., 2023). More broadly, numerous studies document adverse effects of pesticide and
fertilizer exposure on infant and child health across diverse contexts (Brainerd and Menon,
2014; Calzada et al., 2023; Frank, 2024; Lai, 2017; Skidmore et al., 2023). These findings
indicate that chemical exposure affects not only individual health outcomes but also long-
run demographic dynamics. This study situates wartime herbicide deployment within this
broader framework, treating it as an extreme case of large-scale chemical exposure.
Understanding the long-run impact of wartime herbicide exposure also requires situating
the analysis within Vietnam’s post-war historical and institutional context. Following reuni-
fication in 1975, Vietnam faced widespread infrastructure destruction, environmental degra-
dation, and severe public health challenges. Although reconstruction began immediately,
economic recovery remained slow and uneven until the market-oriented Poi Mdi reforms ini-

tiated in 1986. While these reforms generated rapid national growth and substantial poverty

3First, both TCDD and several classes of pesticides, particularly organochlorine compounds and certain
insecticides and herbicides, act as endocrine-disrupting chemicals, interfering with hormone receptors and
transcriptional regulation that govern reproduction, fetal development, metabolism, and neurological func-
tion. Second, both exhibit high lipophilicity and resistance to degradation, enabling persistence in soils and
sediments, bioaccumulation in human adipose tissue, and biomagnification through food chains. Third, for
both, health risks arise primarily through low-dose, chronic exposure rather than acute toxicity.



reduction, recovery trajectories varied markedly across regions. Areas heavily exposed to
wartime herbicides often lagged in health outcomes, agricultural recovery, and infrastruc-
ture development. Remediation and health monitoring programs targeting dioxin contam-
ination were introduced primarily from the 1990s onward, but their geographic coverage
and effectiveness remained limited (Stellman and Stellman, 2018)." Against this backdrop,
persistent population deficits in heavily sprayed areas would indicate that the demographic
consequences of chemical exposure were not fully offset by post-war growth and policy in-
tervention. This analysis therefore examines whether wartime herbicide deployment left a

durable imprint on population dynamics nearly half a century after exposure.

3 Data

Our empirical analysis combines the archival military records of herbicide spray, historical
maps, and contemporary geospatial datasets to explore the persistent legacies of herbicidal
warfare in Vietnam. To mitigate the endogeneity concerns, we leverage the micro-level
variations in spray flights within geographically small areas around the nozzle-on/off and

direction-change points of Ranch Hand aircraft, combined with the regression kink design.

3.1 Stellman-National Academy of Sciences HERBS File

To measure the landscape of herbicide spray, we rely on the military archival records of the
Stellman-National Academy of Sciences version of the Herbicide Report System file database

(S-NAS HERBS, Stellman et al., 2003a,0).> The S-NAS HERBS is a compilation of military

4Dung (2023) provides a brief overview of post-war support for Agent Orange victims. Specifically, under
Vietnamese government’s “Preferential Treatment of People with Meritorious Services to the Revolution,”
veterans who suffer from health issues caused by wartime violence, including exposure to herbicide spraying,
and their families are eligible to receive monthly allowances. Civilians affected by Agent Orange are eligible
for monthly allowances under the social protection policies for people with disabilities. Agent Orange victims
also receive assistance from domestic and international non-government organizations.

5We web-scraped the mission records from the Agent Orange Warehouse website. Available at: http:
//www.workerveteranhealth.org/milherbs/new/, accessed August 29, 2021. See Appendix A for details. We
discarded 91 errant entries of “fixed-wing aircraft” records with single (not multiple) geocoordinates.
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mission records of the HERBS file originally developed by the U.S. Department of Defense
with corrections, containing 9,141 reports of the spray missions with several spray methods
(i.e., fixed-wing aircraft, helicopters, and ground-spraying) in 1961-1971. A record in the
S-NAS-HERBS database corresponds to a single mission with one or more spray paths.
Figure 1 shows the geographical and temporal distributions of the mission records. As
elaborated in detail below, the following analysis relies on the fixed-wing aircraft missions
that dispersed approximately 95% of herbicides (Stellman et al., 20034, 681-682).

A noteworthy aspect of the database is its geocoding accuracy. In addition to mission
dates, spray methods, agent types, and gallonage information, the database documents “the
actual flight paths taken by Ranch Hand aircraft as they carried out their spray missions,”
including “locations at which the aircraft switched directions or turned off and on their spray

nozzles” (Stellman et al., 20030, 323), providing a detailed landscape of spray missions.”

3.2 Treatment and Herbicide Exposure Opportunity Index

We use hamlets in South Vietnam as the unit of analysis in the following analysis, based
on the geocoordinates recorded in the Vietnam Hamlet Evaluation System (HES) Gazetteer
Data (Douglass, 2011). The key treatment indicator is the spray-on, direction-change, and
spray-off of fixed-wing aircraft spray missions. Thus, we fundamentally estimate the causal
effect of herbicide spraying on post-war population growth, measured as the distance gra-
dient from the spray nozzle on-off and direction switching points. Solely for interpretive
purposes, we then convert the estimated “distance effect” into a “quantity-based effect” We
do so by constructing a numerical model that maps our distance measure to an expected her-
bicide exposure, which we refer to as an “exposure opportunity index” (EOI) following the

literature (e.g., Stellman et al.; 20030; Stellman and Stellman, 1986). Henceforth, although

6To navigate aircraft and record spray-on, direction-change, and spray-off points, the tactical air naviga-
tion (TACAN) system distance measuring equipment (DME) was well-developed in Southeast Asia by the
1960s. During mission flights, TACAN/DME continuously offered geographical navigation using the (short)
ultra high frequency (UHF) radio range (Rowley, 1975). An essentially same navigation system guided civic
aviation until the mid-1990s or before the civic use of the global positioning system (GPS).
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Figure 1: Herbicide Spray Missions

Notes: Segments in maps represent the spray paths. (a) Shading is proportional to the quantity of sprayed
herbicide in gallons sprayed by individual spray legs (straight lines without a turn). (b) Colors indicate
spray methods. Thick gray lines indicate international borders. Thin gray lines and polygons represent
major water bodies. (c¢), (d) Yearly distribution of herbicide spray (in 1,000 gallons) and spray methods,
omitting four helicopter missions in 1961.
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our causal estimates rely exclusively on distance and hamlet locations, to facilitate better
sense of understanding of the treatment effect, we also report the estimates with hamlet-level
opportunities, although not actual levels, of exposure to herbicide.

Specifically, we broadly follow the distance-weighted approach of Stellman and Stellman

(1986, 309) and construct an EOI of herbicide spray with the following specification:

HERB, = 3. G; - e i, (1)
JEH

where ¢ indexes hamlets and j spray flight “legs” of the fixed-wing aircraft missions. Follow-
ing Stellman et al. (20035, 325), we first split individual flight paths (contiguous lines) into
distinct flight legs indicated by the straight lines without turns. As the gallonage informa-
tion is aggregated at the mission level, we divide and assign the total mission-level herbicide
quantities to individual legs in proportion to its spray run length.” G, indicates the gallons
of the herbicides sprayed in leg j, H is a set of spray flight legs, and D;; represents the
geodesic distance between hamlet ¢ and flight leg j. A = % is an arbitrary parameter,
where DT determines the geodesic distance at which the herbicide exposure decays to the
half of a “direct” (zero-distance) hit with D;; = 0, with the baseline of D"l = 500 meters.
Two aspects of the exposure opportunity index are worth explanations. First, the index

is not a measure of the actual levels of exposure to herbicide. Rather, it can be considered
a measure of exposure opportunity, capturing the likelihood that individual hamlets were
exposed based on spray intensity and geographic proximity to flight paths. Admittedly, as
with other EOI measures, the absence of direct measurements of biological dose prevents a
direct validation of the index against ground truth. Nonetheless, the presented index offers
a simple, if inevitably imperfect, proxy for location-based exposure history, and provides an

interpretable way to characterize the treatment effect.

Second, the baseline setting of the half-decay distance parameter of D™ = 500 meters

"For example, if a mission includes one flight with four legs (three turns) with an equal leg length sprayed
1,000 gallons in total, we assign 250 gallons to each flight leg.
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reflects the drift estimates in U.S. military guidance on aerial herbicide applications (Dar-
row et al., 1969). Specifically, the guidance reports lateral drift for coarse droplets based
on droplet fall time multiplied by crosswind speed; and forward (momentum) drift can ap-
proximately be estimated in the same manner using aircraft speed instead of crosswinds.®
Assuming the same fall time, probable forward drift distance ranges from 2.8-3.2 km for
200 pm droplets to 0.9-1.1 km for 300 pum at the typical aircraft speed of 240-278 km/h.
For robustness checks, Appendix C.2 reports the estimates with alternative parameter values

of DMl — 100 meters, 250 meters, and 1 km, mimicking smaller and larger drift ranges.

3.3 Outcome: Population Size and Growth Rate

The following analysis focuses on contemporary population size and population growth rate
as outcome variables. We rely on the WorldPop data, which provides geographically disaggre-
gated records of population estimates at 100 meter level on an annual basis in the 2001-2020
period.” To construct the population size variable, we first extract the annual records of
population counts at the hamlet locations, and take the natural logarithm of the variable
after adding 1. The (logged) overall and annual population growth rates, respectively, are

measured as In Populationyg,, — In Population,,; and In Population, — In Population,_.

8Most of the spray volume of aircraft missions consists of droplets 200 um or larger (Darrow et al., 1969,
29). 200-300 pm droplets under crosswinds of 3, 6, and 9 mp/h are expected to be laterally displaced by
roughly 137, 274, and 411 feet (&~ 42, 84, 125 meters) for 200 wm, and 61, 122, and 183 feet (=~ 19, 37,
56 meters) for 300 pm, respectively.

9 Available at: https://www.worldpop.org, accessed August 6, 2021. Due to errant entries, we exclude the
population estimates in 2000 from the analysis. While WorldPop is the sole available dataset to construct
the hamlet-level population estimates, we validate the dataset against the national census at the aggregated
commune level. The national census is only available for 1999, 2009, and 2019 in Vietnam, with the most
disaggregated level remaining the commune level. Comparing WorldPop with the population size in the
2019 census at the commune level, we find a strong positive correlation between the two records (Pearson’s
r = 0.853; Spearman’s p = 0.822), while the discrepancy between the two is only weakly correlated with the
census population size (r = —0.078; p = —0.070), suggesting that WorldPop provides a reasonable proxy of
the demographic geography both in urban and rural areas.
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3.4 Covariate: Key Spray Targets and Related Attributes

To facilitate the empirical analysis, we combine archival sources and several geographical
databases to construct three sets of covariates. The first set of covariates measures the
proximity to the key spray targets. Operation Ranch Hand involved two primary objec-
tives, forest defoliation and destruction of enemy food supplies, with key targets including
“base camps and fire support bases...lines of communication, enemy infiltration routes, and
enemy base camps” (IoM, 1995, 85). The mission authorization process also intended to
prevent damage to densely populated areas and crops not under Viet Cong (VC) control
(MACYV, 1969). To measure proximity to the key spray targets, we include the prevalence
of VC control in 1967-1969 (HES, McCormick, 2021), geodesic distances to suspected ar-
eas of North Vietnam Army (NVA) bases (Enemy Base Area File, BASFA), U.S. Air Force
and Navy bases, U.S. Army and Marine troops in 1961-1971 (S-NAS-HERBS), and roads
(including trails, Indochina Atlas), average hamlet population size in 1967-1969 (HES, Dou-
glass, 2011), and dummy variables for the presence of forest, rice croplands, and slash and
burn cultivation (Indochina Atlas), with the details described in Appendix A.4.""

Second, geographic covariates include mean elevation and its standard deviation as a
proxy of terrain ruggedness (USGS, 1996), soil suitability for rice cultivation (Zabel et al.,
2014), distance to rivers, flow accumulation (Lehner et al.; 2008), average precipitation, and
average temperature (1970-2000, Fick and Hijmans, 2017). To account for wind conditions
potentially influencing drift, we also measure the averages of the u- and v-components (east-
ward and northward, respectively) of the neutral wind over the mission period (1961-1971,
Hersbach et al., 2020)."" Finally, historical covariates are the number of hamlets within 30

kilometers, distance to railways (Indochina Atlas) and international borders as of the Viet-

10Where multiple hamlet-month observations are available, VC control measures the average of a dummy
variable indicating VC control. To measure road proximity and cropland presence, we georeferenced and
image-processed the maps of Indochina Atlas compiled by the Central Intelligence Agency (CIA) in 1970.
For the locations of NVA bases, we rely on the Enemy Base Area File (BASFA), July 1, 1967-July 1, 1971.

HThe u- and v-components of the neutral wind are measured in meters per second and may take both
negative (westward or southward) and positive values (eastward or northward). Together, these components
account for both the direction and the magnitude (speed) of the neutral wind.
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nam War period, and the average of the annual minimum distance to aerial bombing drop

points in 1965-1971 by USAF (Defense Digital Service, 2016)."

4 Identification Strategy: Regression Kink Design

To explore the evidence of causal effects, we rely on a fuzzy regression kink (RK) design that
exploits the exogenous fluctuations in herbicide exposure within geographically small areas
around the spray start, turn, and end points.'® Recall that the S-NAS-HERBS database
that documents the “actual flight paths” and the “locations at which the aircraft switched
directions or turned off and on their spray nozzles” (Stellman et al., 20035, 323)."" The
core idea behind our RK strategy is that the exact locations at which aircraft makes turns
and turned on and off spray nozzles and the herbicide dispersal were, at least partly, un-
controllable. Besides initial mission plans and intended targets, the realized distribution of
herbicide was driven by plausibly exogenous micro-level factors including climate conditions,
wind, terrain, and turbulence from the aircraft as well as ground fire hits (oM, 1995, 86-87).

The RK strategy aligns with the known historical facts. Consistent with the underly-
ing idea, “[t|he responsibility for flying the C-123 during the crucial spraying part of each
mission was shared between the pilot and the copilot”: the pilot maintained “control of
the switches which started and stopped the spray,” while the copilot was “responsible for
handling emergencies” (Buckingham, 1982, 37). As noted in Buckingham (1982, 37), this
latter task demanded extreme proficiency, given that “[cJonsidering the low altitude at which
Ranch Hand flew, the copilot’s reaction in such an emergency had to be immediate and cor-

rect the first time; there would be no chance to rectify a mistake” As such, instantaneous

12The 30 km cutoff reflects the historical facts of Ranch Hand missions and standard error clustering in
the regression estimation. See model specification section for details.

13 As mentioned earlier, our goal is to estimate the causal effect of herbicide spraying on post-war population
growth, expressed as the distance gradient from the spray nozzle on-off and direction-switching points. To
do this we use the spray nozzle on-off points (and aircraft turning points) as cutoffs in a RK framework,
where the running variable is the distance from the spray start, direction-change, and end points.

14Gee footnote 6 for the aircraft navigation system in the Vietnam War period. Appendix B investigates
potential nonlinearity in the covariate distributions across the kink point, and Appendix C examines model
dependence and how model specification influences the main findings.
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decisions of aircraft pilots and the disturbing factors jointly determined the actual spray
dispersal, which inevitably deviated from the initial mission plans and generated haphazard,
natural-experimental variation in the herbicide distribution.'”

Consequently, within geographically small areas around the spray start, turn, and end
points, the realized herbicide dispersal generates a discontinuous slope change, or a disconti-
nuity in the first derivative, in the distribution of herbicide exposure, which remains uncorre-
lated with potential confounding forces. Our RK strategy leverages this natural experimental
kink in the treatment function, in the absence of kink in the confounder distributions, to
derive causal identification.'® Intuitively, we compare hamlets that were barely covered by
spray flights and received direct hits (i.e., “treated” hamlets with greater herbicide exposure
due to direct hits) with hamlets that were sufficiently close to but located barely outside
of the spray paths and received indirect hits (i.e., “control” hamlets with less exposure due
to accidental drifts). Located within geographically small areas, these treated and control
hamlets should have similar or smooth (without kink) distributions of geographic, histor-
ical, and socioeconomic attributes prior to herbicide exposure across the spray-on/off and
direction-change points, which we empirically validate in the following section.

Here, we adopt a RK design rather than a regression discontinuity (RD) design given

the probable drifts of herbicide outside the areas with direct hits. We rely on a fuzzy, not

1570 illustrate, approximately 29% of aircraft sorties were intercepted by ground fire in 1966 (IoM, 1995,
86), and the crop damage induced by drift on defoliation missions was greater than the damage by crop
destruction missions (National Academy of Sciences, 1974, S-5).

16Tn RK designs, the cutoff itself need not be exogenous. Rather, similar to RD designs, identification relies
on the smoothness of covariate distributions and the lack of deterministic manipulation of the running variable
(smoothness assumption, Card et al., 20150). Often, policy thresholds are set non-randomly; nonetheless,
as long as the smoothness assumption holds, the RK designs provide unbiased estimates of the policy
impact or the treatment effect. In the current setting, however, the assignment of the cutoff is locally
exogenous. This is because the spray-on, spray-off, and direction-switching locations in our data reflect
actual operational records rather than intended flight plans, thereby strengthening the credibility of the
smoothness assumption. Metaphorically, the pilot’s “trembling hand” introduces local randomness into the
precise locations of herbicide release, which ensures that there are no systematic discontinuities in potential
outcomes at the kink points. Below, we empirically validate the smoothness of the distributions of the
key hamlet-level covariates around the cutoff, along with the running variable distribution. Note also that
just as the fuzzy RD design, the fuzzy RK design is essentially an IV estimation conducted within the local
neighborhood around the cutoff, which allows incomplete manipulation while addressing measurement errors
in the treatment and the running variable (Card et al., 20150, 2467-2469).
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sharp, RK design given the unknown slope change parameter of the treatment function at
the kink point, as well as probable measurement errors in the treatment and the running

variable retrieved from the archival military records (Card et al., 20155, 2464-2467).

4.1 Running Variable

The RK design requires a subset of sample hamlets located within sufficiently small geo-
graphic areas around the spray start, turn, and end points. The analysis also requires the
corresponding distance measure between hamlet locations and the spray start, turn, and end
points as a running variable as well as a treatment-side dummy variable indicating actual
spray hits. More specifically, our running variable is the distance from the cutoff, or the
spray start, turn, and end points, measured as a continuous real number that takes a nega-
tive value when a hamlet lies on the spray-off side. If a hamlet is affected by multiple spray
flights, we compute this number for each flight, and take the maximum of these numbers
across all spray runs.'” A hamlet is then classified as treatment-side if this value is positive
(i.e., spray-on side), and as control-side if it is negative (i.e., spray-off side).

The coding procedure involves several steps. First, we extend the recorded flight paths of
fixed-wing aircraft missions from the flight start, turn, and end points by an arbitrary length
of 0.05 degree ~ 5.56 km. Second, we add buffers of 0.001 degree ~ 111 meter width to both
sides (222 meters) of the extended flight paths, as graphically illustrated by Figure 2(a). The
extension length of 5.56 km and the 222 meter buffer width mimic ordinary spray flights. A
routine fixed-wing aircraft mission involved multiple aircraft and dispersed herbicide at the
airspeed of 130-150 knots (240-278 km/h) and an altitude of 150 feet, with each aircraft
covering a laterally contiguous, partially overlapped swath of 73 to 80 meter (240 foot)
wide and 16 km long (Buckingham, 1982, 37, 132; Darrow et al., 1969, 26; ToM, 1995,

25, 86-87; Stellman et al.; 2003b, 327). An extension length of 5.56 km approximately

17 Accordingly, if a hamlet is on the spray-off side for all flights, its running variable becomes the “minimum”
absolute distance (i.e., the maximum of these negative numbers). Otherwise, it is the “maximum” distance
among those missions that the hamlet location is on the spray-on side.
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Figure 2: Spray Flight Paths, Hamlet Locations, and the RK Running Variable Coding Procedure

Notes: (a) Black polygons represent observed flight paths, and blue polygons indicate the extended paths
with a 0.05 degree (= 5.56 km) distance from the start/turn/end points with a 111 meter buffer on each
side (222 meters in total). Of the 14,733 hamlets (Panel (c¢)), hamlets covered by observed flight polygons
with a 222 meter buffer (indicated by a gray polygon and black dashed segments) are categorized into the
treatment groups (red dots), while the hamlets only covered by a blue polygon are categorized into the
control group (orange dots; Panel (b)). (d) Vertical thick segment indicates a kink edge, and airplane
symbol % indicates the direction of the spray flight. Dots and horizontal solid segments, respectively,
represent hamlet locations and observed and “extended” spray flight paths. Dashed and dotted segments
and shades represent the buffer around the observed (extended) spray path. The full RK sample keeps
hamlets located within the 5.56 km extension length (e.g., hamlets 2—4 in the treatment group and hamlets
5-7 in the control group) while discarding the remaining hamlets (e.g., hamlets 1 and 8) located outside of
the spray path polygon. A 4 km bandwidth further discards hamlets 2 and 7 from the analysis.

corresponds to the “less-than-one-half-minute-away” distance from the observed kink point

at the airspeed of 240-278 km/h (= 4-4.63 km/m). This extension length also corresponds
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to typical intra-commune distances. Given the average area of contemporary communes of
29.6 km?, this spatial scale is equivalent to a square with a side length of approximately
5.44 km (= /29.6) or a circle with a diameter of roughly 6.14 km (= 2 x \/m) A 222
meter buffer width similarly approximates the combined swath of a routine spray mission
involving three airplanes, with relatively limited lateral drifts (Darrow et al., 1969). This
222 meter or three-aircraft approximation also reflects the historical fact that three C-123
Provider airplanes were assigned to Operation Ranch Hand until 1964, and the number of
C-123s increased to 12 in 1965 and then to 36 in 1967 (IoM, 1995, 86).

Third, we overlay the extended flight path polygons onto hamlet locations. The hamlets
covered by the observed flight path are coded as “treated” (red dots), while those only covered
by the extended parts are categorized into the control group (orange dots in Figures 2(c)).
For example, in Figure 2(d), among the hamlets located within the 5.56 km distance from
the kink edge (cutoff) in the middle, hamlets 2-4 are categorized into the treatment group
while hamlets 5-8 into the control group. We then measure the geodesic distance between
hamlet locations and the nearest kink edges to assign the running variable.

The geoprocessing leaves us a sample of 716 hamlets (4.86% of 14,733 hamlets in panel (¢))
in 38 provinces in South Vietnam.'® As in Figure 2(b), the full RK sample includes the
hamlets that are geographically covered by the observed or extended flight path polygons

with the kink edge distance smaller than 5.56 km extension length.

18See Appendix A.3 for details of the running variable coding procedure including the multiple-path cases.
Note also that the majority of hamlets were affected by three or fewer flight paths. In the baseline RK
subsample with a 4 km bandwidth, this accounts for 467 out of 519 hamlets (89.98%). Specifically, 369
hamlets were covered by a single path (127 treated and 242 control), 84 hamlets by two paths (17 treated
and 67 control), and 14 hamlets by three paths (4 treated and 10 control). The results reported below remain
qualitatively unchanged with the limited subsample with 467 hamlets.

18



4.2 Model Specification

The following analysis builds upon two classes of estimation models. First, the distance-

based, reduced-form model is specified as:

Yy, = vEdgeDisty,, + 7' EdgeDist,,, x 1[EdgeDist,,, > 0] +(1[EdgeDist,, > 0] + X, 8

=Slope Change

4 n;’rovince i Ks[%?nt + glL[ledg'end + Llff}z]ase + f(Lonp,, Latp,) + enp, (2)

where h, p, a, and [, respectively, index hamlets, provinces, herbicide agents, and flight
leg edges. EdgeDist,, is the geodesic distance from the kink edges in kilometers recentered
at zero, and 1[EdgeDist;, > 0] is a dummy variable which takes one if EdgeDist;,, > 0
(treatment group hamlets) and zero otherwise (control group hamlets)."” X}, is a vector of
hamlet-level covariates, and f(Lony,, Laty,) is a two-dimensional cubic polynomial of hamlet

geocoordinates to screen out spatial trends.”’ 7)™V denotes South Vietnam province fixed

effects, and /-iaAﬁ’nt herbicide agent fixed effects indicating the chemical contamination with

dioxin.”! HZL[Zig'end is leg-end fixed effects which take one if a hamlet’s running variable is its

distance to a spray leg end edge and zero otherwise; and Lf[};fse is fixed effects indicating
a hamlet’s running variable measured as the distance to the flight leg edges during three
mission phases, 19621964, 1965-1966, and 1967-1971, reflecting the increase of the number
of aircraft from 3 to 12 in 1965 and then to 36 in 1967 assigned to Operation Ranch Hand.””

Second, to facilitate intuitive interpretation of the coefficient estimates, our RK estima-

tion plugs-in the EOI of Equation (1) to the reduced-form model. Specifically, with abuse

The specification includes 1[EdgeDist hp = 0] and thereby allows discontinuity in the treatment function
at the kink point. When the kernel is symmetric (e.g., a uniform kernel), the asymptotic bias and variance
of the RK estimand are not affected by the continuity imposition (Card et al.; 2012, 2015b).

20Linear, quadratic, and fifth-order polynomials of longitude and latitude yield qualitatively similar results.

21The agent fixed effects have two categories to reflect the chemical contamination with dioxin: TCDD
(“Orange,” ‘Pink,” and “Purple”) and non-TCDD (“Blue” and “White”). We put eight records with an
“Unknown” agent into the non-TCDD category.

22 As noted in Section 3.2, a “leg” indicates a part or a total path of a spray path represented as a straight
line without turns. Leg-end fixed effects take the value of 1 for both the end and direction-change points.
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of notations, the RK estimation builds upon the following two-stage model:

In HERBy,, = vEdgeDist,,, + 0 EdgeDist,,, x 1[EdgeDist,, > 0] +(1[EdgeDist,, > 0]
N— ——

=EOI =Instrumental Variable

4 th,B + Provmce + K Agent eLeg end E}}Zase + fl (Lonhp,Lathp) + Ehp, (3)

Yy, = 7K In HER HERBy,, +AEdgeDist;,, + v1[EdgeDist,, > 0] + X JPE + 7@1,3 rovince

—_——
=Predicted EOI

+ paA’%f]mt + gbﬁz]g'end - wﬁ,ll’]ase + fa(Lonpy, Laty,) 4 upp, if |[EdgeDist,, | < b, (4)

where HERB denotes the EOI, and the remaining terms are defined analogously to the
reduced-form specification. The panel specification replaces the second-stage outcome with
the annual population growth rate and adds a year fixed effect to the right hand side.””
Following Card et al. (2012, 20156, 2017), our estimation relies on an uniform (rather than
triangular) kernel, and the baseline setup uses a bandwidth of b = 4 kilometers (519 hamlet
observations). Intuitively, a 4 km bandwidth approximates the “one-minute away” distance
at the typical airspeed of 4-4.63 km/m (= 240-278 km/h) of fixed-wing aircraft missions.
To ensure that the fixed bandwidth choice does not drive the results, we replicate the RK
estimates with a alternative bandwidth sizes.

ITT

in the reduced form (Equation 2) and 77% = T

The parameters of interest are 7717

in the second stage (Equation 4). 7'TT and 78K respectively, capture the intention-to-treat
(ITT) effect of the spray-on/off or direction switching of fixed-wind missions and the average
effect of a marginal increase in In HERB on the outcome at the cutoff. Formally, 78K can
be interpreted as the treatment-on-the-treated (TT) effect (Florens et al., 2008) or the local

average response (LAR) of the herbicide EOT (Altonji and Matzkin, 2005), instrumented by

23With abuse of notations, the panel version of the second-stage model is:

Yipt = TRKID@B}LP + AEdgeDist,,, + v1[EdgeDist,, > 0] + X & + ) """ + ps[ie]nt

T U+ Y+ fo(Lonny, Lathy) + enpe

Year

where 7,"°*" represents year fixed effect, with the corresponding first-stage model specified analogously.
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EdgeDist,,, x 1[EdgeDist,, > 0] in the first stage (Equation 3, Card et al., 20150).”"

Several aspects of the model specification warrant explanations. Given the asymptotic
results of Pei et al. (2022), we adopt a local linear specification given the relatively small
sample size. We also rely on province, agent, leg-end, and mission-phase fixed effects instead
of the ideal flight or leg fixed effects due to the limited sample size. Nonetheless, the
specification reflects the historical fact that South Vietnam Government both at the national
and provincial levels and the U.S. jointly controlled the herbicide missions (Buckingham,
1982, 36-38; ToM, 1995, 86).”° Province fixed effects subsume the regional variation in the
authorization process and other province-level differences of counterinsurgency strategies;
and the remaining fixed effects absorb the types of chemical shocks (agent fixed effects),
aircraft directions (leg-end fixed effects), and overall intensity of spray missions and potential
military significance of nearby targets (mission-phase fixed effects).

Throughout the analysis, we rely on the ordinary least squares (OLS) and the two-stage
least-squares (2SLS) estimators. To account for the increased error due to the two-stage
estimation and potential error dependence across space, we report Conley’s (1999) standard

26

errors robust to spatial clustering with a 30 km cutoff.”® Appendix A reports descriptive

statistics of the variables.

4.3 Identification Assumption

A valid fuzzy RK design hinges on the smoothness assumption, which yields two testable

implications: First, the density of the running variable is sufficiently smooth, or continuously

24Geen from the instrumental variable (IV) perspective, a key identification assumption in a RK design is
that the instrument (spray-on side indicator and the running variable interaction term) affects the outcome
(slope change) only through the EOI (slope change). Violation of this exclusion restriction condition inval-
idates the smoothness assumption (Card et al., 20150). We briefly validate the identification assumption
below and relegate the details to Appendix B.

25The authorization process also involved the U.S. Ambassador, the U.S. Military Assistance Command,
and the Corps Tactical Zones (CTZs). Dell and Querubin (2018) use the CTZ (Corps I-II) boundary as
one of the sources for causal identification. As the CTZ boundaries follow the province boundaries, province
fixed effects subsume the difference in counterinsurgency strategy across CTZs and local governments.

26We use a 30 km cutoff to reflect the combat range of aircraft missions in which a C-123 airplane covered
a swath of 80 m wide and 16 km long (Buckingham, 1982, 132). A 30 km cutoff approximately reflects the
16-km range as a radius. The sample mean (median) of the aircraft spray legs is 18 km (16.48 km).
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differentiable at the cutoff; and second, predetermined covariates evolve smoothly around
the kink point (Card et al., 2012, 20150, 2017).

Following literature (Bana et al., 2020; Card et al., 2015a,b; Landais, 2015), we empirically
validate the smoothness assumption with the running variable and covariate distributions in
three ways. First, Figure B.1 in the Appendix examines continuity of the running variable
distribution using the polynomial estimator of Cattanco et al. (2020), and fails to detect
statistically significant discontinuity at the kink point (¢ = —0.209 and p = 0.835). Second,
we test for the kink in the running variable distribution using polynomial regressions.”’
As reported in Figure B.2 in the Appendix, the polynomial regressions fail to detect a
slope change in the running variable distribution around the kink point or deterministic
sorting. Finally, Figure B.3 in the Appendix presents a series of placebo kink estimates
with the covariates, including hamlet population in 1967-1969 (during Operation Ranch
Hand), as the left-hand-side variable using a reduced-form specification (Equation 2). Again,
and consistent with the smoothness assumption, most of the placebo regressions reveals
little discernible slope change at the kink point. Exceptions are the substantively small but
statistically significant slope change in the distance to U.S. bases (standardized coefficient
= 0.078; t = 2.559). Nonetheless, as in Appendix B.2, the same randomization inference
exercise introduced in the next section disagrees with the asymptotic inference results and
fails to negate that the covariate kink arises by random chance. Moreover, Appendix C.1
finds little evidence of model dependence, suggesting that the covariate kink merely plays a

minor role in influencing the main results.

2"Formally, and with abuse of notation, we first aggregate the hamlet observations using bins with different
sizes based on the running variable and then estimate the following regression model:

P
NgPs = B1[EdgeDist, > 0] + Z [ypEdgeDisti + 6,EdgeDist, x 1[EdgeDist, > O]} + ep,
p=1

where b indexes bins, N°P% reflects the number of observations in each bin, EdgeDist is the midpoint of
EdgeDist of each bin, and P is the polynomial order. §; captures the slope change of the probability density
function of the running variable at the kink point, which is expected to be indistinguishable from zero.
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5 Results

Figure 3 displays the distributions of population size in 2020 (reduced-form association;
panel (a)) and the EOI (first-stage association; panel (b)) across the cutoff, given the two-
dimensional polynomial of hamlet geocoordinates and the fixed effects. As explained above,
our main estimation is the impact of herbicide spraying on population in terms of the distance
from the spray on-off and aircraft-turning points. Figure 3(a) graphically illustrates the

T in the reduced-form specification (Equation 2), and

estimated distance gradient, or 7
Table C.1 in the Appendix reports the reduced-form estimates in regression format with and
without additional covariate adjustments. The estimates show that population is markedly
lower in the spray-on area (i.e., the right of the cutoff; Figure 3(a)). On the spray-off side
(i.e., the left of the cutoff) population size gradually recovers as the distance increases from
the cutoff, consistent with the possible drift of herbicide beyond the cutoff.

As noted earlier, we reinterpret this main result in terms of herbicide quantity. We do so
by linking the distance to the EOI, which we call the “first stage,” as the index reflects the
“built-in” slope induced by construction of Equation (1) rather than the “ground truth” levels
of herbicide exposure. Figure 3(b) presents this first-stage association, or J in Equation 3.
Using the EOI as a “pseudo” treatment variable, we then reestimate the treatment effect, a
step we refer to as the “second stage””® In the following, we first report the cross-sectional

RK estimates with population size as the outcome. We then extend the analysis with growth

rate and panel specifications, followed by a brief summary of robustness checks.

28The fuzzy RK estimand, 7%, can be written as the ratio of the reduced-form slope change (i.e., slope
change in the outcome function, 7'TT) relative to the first-stage slope change (i.e., slope change in the
treatment function, 0) at the kink point as (Card et al., 2012, 2015b):

TRK _ limvgw d(]E[YlV = ’U]) o hmvoTO d(E[Y|V = ’UD
dv v=v0 dv

) / < lim,, o d(E[D|V = v]) _ limyy 40 d(E[D|V = v])

dv v=vp dv

k)
v=vg

where V' denotes the running variable, vg the kink point, and D the treatment.
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Figure 3: Discontinuous Slope Change in the Outcome and EOI Functions

Notes: Dots represent the binned frequencies, and solid and dashed lines show linear regression fits
adjusting for longitude, latitude, and the fixed effects. Solid line allows discontinuity at the kink point (as
in Equations 2 and 3), while the dashed line imposes continuity by dropping the treatment-side dummy
variable. The bin size is selected by the integrated mean squared error-optimal mimicking variance
evenly-spaced method using spacing estimators (Calonico et al., 2015).

5.1 Population Size Estimates

Plugging the EOI score into the reduced-form model, Table 1 reports the more intuitively in-
terpretable, RK estimation results with population size in 2001 (Panel B) and 2020 (Panel C)
as the outcome, along with the first-stage estimates (Panel A). Model (1) is the baseline
model without additional controls besides the two-dimensional polynomial of longitude and
latitude and fixed effects. Models (2) to (4) consecutively add the proximity to the key
targets, geographical characteristics, and historical attributes as covariates. To address
potential spillover effects, Model (5) adjusts for the spatially-lagged EOI with the 30 km
neighbor cutoff in addition to the full set of covariates. Note that given the limitation in
data availability and the historical facts, some of the covariates can partly be posttreatment
(e.g., bombing point distance, 1965-1971). Thus, the models with covariate adjustments do
not necessarily provide conservative estimates due to possible posttreatment bias of unknown
directions and should be interpreted with caution.

Table 1 confirms the graphical evidence of Figure 3 and underlines the herbicide legacies.

Across model specifications, the first-stage, EOI kink estimates are substantively and statis-
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Table 1: Herbicide Exposure and Population Size in 2001 and 2020

Panel A: In HERB

(1) (2) (3) 4) ()
First stage
d: EdgeDist x 1[EdgeDist > 0] —0.569***  —0.552*** —0.565"** —0.564*** —0.564***
(0.081) (0.075) (0.072) (0.070) (0.070)
F-statistic (weak instrument) 49.209 54.014 61.924 64.440 65.179
Adjusted R? 0.570 0.609 0.613 0.617 0.617
Panel B: In Population (2001)
(1) 2) (3) (4) (5)
Second stage
7RK: In HERB —0.264***  —0.262*** —0.211*** —0.198*** —0.190"**
(0.082) (0.076) (0.069) (0.071) (0.071)
10% increase effect size -251%  —-250%  —2.01%  —1.88%  —1.81%
Average outcome 1.311 1.311 1.311 1.311 1.311
Randomization inference (reduced form)
Kink point (KP) randomization p-value 0.019 0.009 0.008 0.010 0.011
Running variable (RV) randomization p-value 0.003 0.001 0.002 0.005 0.007
Spatial noise (SN) randomization p-value 0.003 0.000 0.002 0.005 0.006

Panel C: In Population (2020)

(1) (2) (3) (4) (5)

Second stage

7RK: In HERB —0.343***  —0.346***  —0.284**  —0.274*** —0.266***
(0.088) (0.082) (0.075) (0.078) (0.078)
10% increase effect size —3.27% —3.29% —2.70% —2.61% —2.53%
Average outcome 1.464 1.464 1.464 1.464 1.464
Randomization inference (reduced form)
KP randomization p-value 0.022 0.012 0.010 0.012 0.013
RV randomization p-value 0.001 0.000 0.001 0.001 0.000
SN randomization p-value 0.000 0.000 0.000 0.001 0.001
Observations 519 519 519 519 519
Avg. N neighbors (Conley SE cluster size) 27.5 27.5 27.5 27.5 27.5
Key target covariates v v v v
Geographic covariates v v v
Historical covariates v v
In spatially-lagged HERB v
Fixed effects and f(Lon, Lat) v v v v v

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Conley (1999) standard errors adjusted for spatial clustering
with a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base dis-
tance, population (1967-1969), U.S. base distance, U.S. troop distance, forest presence, rice cropland, road
distance, slash and burn cropland, Viet Cong control prevalence. Geographic covariates: Precipitation,
temperature, u- and v-components of neutral wind, elevation, flow accumulation, rice suitability, river dis-
tance, ruggedness. Historical covariates: Bombing point distance, border distance, number of neighbor
hamlets, railway distance. In spatially-lagged HERB is the logged average HERB among the neighbor
hamlets with a 30 km cutoff. Fixed effects: Agent fixed effect, province fixed effect, end-leg fixed ef-
fect, mission phase fixed effect. Randomization inference: KP randomization p-value is computed by
the permutation test of Ganong and Jager (2018) with 10,000 placebo kink points drawn from uniform
distribution U (—4 km,4 km). RV randomization p-value is obtained by randomly assigning the running
variable to the sample hamlets for 10,000 times. SN randomization p-value is obtained by 10,000 synthetic
spatial noise simulations of Kelly (2021) with the outcome replaced by randomly generated spatial noise.
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tically significant (Panel A). The second-stage coefficients on In HERB are also consistently
signed negative and retain the statistical significance at the conventional 5% level (Panels B
and C). Note also that the uninstrumented OLS estimates in Appendix Table A.2 underes-
timate or even fail to reveal the negative association, suggesting that nonrandom herbicide
assignment invites bias into naive comparisons. Moreover, the coefficient stability suggests
that the estimates are unlikely to be driven by an arbitrary covariate adjustment choices,
which is of a particular concern in RK applications (Ando, 2017) and we further investi-
gate in Appendix C.1. The negative association also remains visible across the outcomes,
population size in 2001 and 2020.

As an initial robustness check, Table 1 reports three randomization inference results.?
First, an important concern for RK applications is the misspecification of the nonlinearity
such that one falsely specifies a curvature without kink as a discontinuous slope change.
To guard against the misspecification bias, we report kink point (KP) randomization p-
value obtained from the reduced-form permutation test (Ganong and Jiger, 2018).*Y For
the permutation exercise, we first generate 10,000 placebo kink points randomly drawn from
a uniform distribution, 4 (—4 km, 4 km). We then consecutively estimate the reduced-form
version of the RK model with the subsample within baseline 4 km bandwidth around each
placebo kink point to obtain the empirical distribution of placebo estimates. The two-
sided p-value is computed by doubling the minimum of the fraction of placebo estimates no
smaller than or no greater than the actual reduced-form coefficient. Second, another intuitive
approach of randomization inference is to randomly assign the running variable (RV) and
the corresponding treatment-side indicator variable to the sample hamlets while holding the
kink point fixed (e.g., Dell and Querubin, 2018, 30-33; see also, Cattanco et al., 2015).

The RV randomization two-sided p-values report the share of the absolute 10,000 placebo

29Randomization exercise relies on the reduced-form and first-stage models as randomization inference
cannot be applied without additional assumptions to unobservable subgroups such as compilers.

30If our RK specification correctly captures a discontinuous slope change, we would be unlikely to see a
slope change with placebo kink points, and thus have a small KP randomization p-value. If, on the other
hand, we falsely specify a quadratic function with no kink as a discontinuous slope change, we would observe
discernible kink estimates with placebo kink points and a large KP randomization p-value.
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coefficients that are larger than the absolute actual reduced-form kink coefficient. Finally, to
address potential spatial curve-fitting and residual spatial autocorrelation, we use the spatial
noise (SN) randomization inference developed by Kelly (2021). This procedure replaces the
left-hand-side variable by synthetic noise with the same estimated spatial structure of the
observed outcome partialled out by covariates. If the estimation is not an artifact of spatial
trends, the observed variable should not explain spatial noise. The SN randomization p-value
indicates the fraction of 10,000 spatial noise simulations which yield absolute ¢ values greater
than the absolute ¢ value estimated with the observed data.

For both population size in 2001 and 2020, the randomization inference results are con-
sistent with asymptotic inference. The three series of randomization p-values remain smaller
than the conventional 5% threshold, suggesting that the actual estimates are unlikely to arise
from misspecification of the underlying nonlinearity (KP randomization), random chance
(RV randomization), or spatial autocorrelation and curve-fitting (SN randomization).

Turning to magnitude, the coefficient estimates can readily be interpreted as elastic-
ity given the log-log specification. The estimates suggest that, measured at the 100 me-
ter grid scale, a 10% increase in herbicide exposure is persistently followed by a 2.61%
(—0.274 x In(1.1) = —0.0261, Model 4, with all covariates) to 3.27% (Model 1, without
covariates) decrease in population size in 2020 (Panel C), and a 1.88% to 2.51% decrease in
2001 (Models 1 and 4 in Panel B). Note that the 10% increase reference does not overstate
the magnitude of the treatment effect, as such an increase in herbicide exposure is observed
within a geographically small area around the kink edges. Specifically, a 10% increase in the
treatment approximately corresponds to a 10.8% increase in In HERB between the average
of the control hamlets within a 250 meter distance from the kink edge and the average of
the treated hamlets within the same distance from the kink edge.

Besides the baseline population growth during the 2001-2020 period (from 1.311 to 1.464
in the logarithm scale, Table 1), the growing, rather than fading away, coefficient size im-

plies that herbicide legacies shape not only population size but also population growth rate.

27



This leads to a testable implication that a similar negative association is also present in
local population growth rate, which contrasts the conventional wisdom of rapid recovery of

population from wartime destruction.

5.2 Population Growth Rate Estimates

To examine the testable implication of cumulatively increasing legacies of herbicide exposure,
we reestimate the RK models with the overall and annual population growth rates during the
2001-2020 period as the outcomes, using both cross-sectional and panel setups. This growth-
rate specification also surmounts the robustness concern that a small number of volatile and
less persistent population count observations in 2001 and 2020 drive the estimation results.
For the panel specification, we extend the baseline cross-sectional specification by replacing
the outcome by the annual growth rate and adding a year fixed effect as an additional
control.’’ In the panel setup, we report robust standard errors clustered at the hamlet
level. Another robustness issue remaining in Table 1 is that the results are based on a fixed
bandwidth of 4 km, leaving a potential concern for the bandwidth choice driving the results.
To examine the herbicide legacies on population growth rate and address these robustness
concerns, we report the RK estimates for overall and annual population growth rates across
different RK bandwidths ranging from 1.5 km to 5.6 km with increments of 50 meters.
Figure 4 presents the RK estimates for overall (Panel (a)) and annual (Panel (b)) popu-
lation growth rates across bandwidth sizes. Regardless of the bandwidth settings and out-
comes, the growth rate estimates reveal a negative association consistent with the population
size estimates.” The effect size is also discernible given the average outcome of 0.153 (or

%193 = 1.165; 16.5% overall population growth in 2001-2020) and the geographically small

31The results remain qualitatively unchanged when further adjusting for the lagged outcome, Y},4.—1.

32Figure 4 follows the specification of model (1) in Table 1. Note that, as reported in Appendix C.1, the
growth rate specification is remarkably robust to different model specifications (different combinations of
adjusted covariates) and exhibits little model dependence. The empirical distribution of the ITT estimates
of all possible 2N covariates — 921 — 9 (097 152 model specifications, jointly including or excluding the u- and
v-components of neutral winds, is almost normally distributed as in Appendix Figure C.1, suggesting that
adjusted covariates affecting the I'TT estimates only due to random error.
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Figure 4: Herbicide Exposure and Population Growth Rate

Notes: Symbols and thin (thick) vertical segments with horizontal ticks represent the RK estimates and
the corresponding 95% (90%) confidence intervals based on Conley (1999) standard errors with spatial
clustering (Panel (a)) and robust standard errors with hamlet-level clustering (Panel (b)). The model
specification in Panel (a) follows model (1) in Table 1. Panel (b) adds a year fixed effect to the baseline
specification. Grey shades represent “0.5-minute-away” (2-2.315 km) and “one-minute-away” distances
(4-4.63 km) from the kink point at the typical airspeed of Ranch Hand aircraft of 240-278 km/h, and
triangles indicate the corresponding point estimates. Annual growth estimate in Panel (b) covers the
20022020 period as the outcome is defined as In Population, — In Population, ; and our dataset covers the
2001-2020 period.
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level of measurement of 100 meter grid. The cross-sectional RK estimate of 7 = —0.079 with
the baseline bandwidth of 4 km suggests that a 10% increase in herbicide exposure translates
into a 0.75 percentage point decrease (—0.079 x In(1.1) = —0.0075) in the overall population
growth rate in 2001-2020 (Figure 4(a)).* The negative association is also visible in the panel
specification with the annual population growth rate as the outcome (Figure 4(h)), revealing
the persistent legacies in the dynamics as well as the snapshots of population outcomes in
the present day. The two panels of Figure 4 also indicate that the estimates are qualita-
tively stable across bandwidth choices and that the baseline bandwidth of 4 km provides

conservative estimates compared to those obtained with smaller bandwidths.

5.3 Robustness Check and Sensitivity Analysis

Robustness and sensitivity concerns in the main estimates include (1) the robustness to the
parameter choices to construct the RK sample and the exposure score, HERB, (2) confound-
ing kink in observed covariates and model dependence, and (3) unobserved confounding kink.
In addition to the placebo kink (covariate kink) estimates reported above and Appendix B.2,
Appendix C addresses these concerns by leveraging alternative combinations of flight buffer
width and half-decay distance parameters, and all possible 2N covariates — 921 — 9 (097 152
model specifications per outcome, treating the u- and v-components of neutral winds as a
single block.”* We also report a jackknife approach and the known historical differences in
counterinsurgency strategies across four U.S. Corps Tactical Zones (CTZs) in South Viet-
nam (see, e.g., Dell and Querubin, 2018), and a sensitivity analysis approach to quantify
how severe unobserved confounding forces would need to be in order to eliminate the main

estimates (Cinelli and Hazlett, 2020).* Reassuringly, none of the robustness checks and

33 s . . . Populationyg,g
Given In Populationgy,, — In Populationgy,; ~ Population ey

interpreted as the effect size in the percentage point scale.

34To improve computational efficiency, we always jointly include or exclude the u- and v-components of
neutral winds, while treating all remaining covariates independently.

35During the Vietnam War, the U.S. divided South Vietnam into four CTZs commanded by different
branches of the U.S. military. Dell and Querubin (2018) exploit the CTZ I-II boundary as one of the sources
for causal identification, given the historical fact that the U.S. Marine Corps (USMC) in Corps Region I

— 1, a 0.75% decrease can approximately be
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sensitivity analysis yields results that would invalidate or overturn the main results, lending

additional credibility to the findings.

6 Conclusion

This article combined the historical records of herbicide missions with a fuzzy RK design
and revealed the negative legacies of herbicidal warfare on contemporary population size
and growth rate in Vietnam. The empirical analysis suggests that the temporary shock of
herbicidal warfare left lasting, rather than temporary, effects on contemporary population
outcomes. While the reported results tell us little about the underlying mechanisms, there
are at least three distinct, although not mutually exclusive, explanations for the revealed
persistent associations, which also opens up pathways for future research. First, the negative
association might reflect decreased birthrates and life expectancy. The reported negative
association between Agent Orange exposure and health outcomes (e.g., Le et al., 2022;
Vuong, 2024; Yamashita and Trinh, 2022) makes the heavily sprayed areas persistently suffer
lower birthrates and decreased life expectancy. Second, domestic migration preferences and
patterns, beyond the temporary displacement of peasants to the city during the Vietnam War
(Huntington, 1968), can also contribute to population dynamics. Increased out-migration
from the herbicide affected areas coupled with decreased in-migration into the damaged areas
can also account for the lasting negative associations. Finally, the lower population size and
growth rates can arise from deteriorated agricultural productivity to sustain local population
(e.g., Appau et al., 2021).

While the limitation in the available hamlet-level records prevents focused analysis, the
first mechanism aligns with the insights of the existing epidemiological and economic re-
search on the exposure to pesticide. As noted earlier, for example, Camacho and Mejia

(2017), Calzada et al. (2023); Dias et al. (2023), and Frank (2024) highlight the increased

implemented a moderate hearts-and-minds-oriented strategy while the U.S. Army commanded Corps Region
IT and emphasized overwhelming firepower and large-scale operations.
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infant mortality in areas with past exposure and usage of pesticide. While the findings
are based on the relatively short-termed records, worsening birthrates coupled with deteri-
orated health outcomes would, at least partly, explain the decreased population outcomes
in the longer term, as documented in this article (see also, Le et al., 2022; Vuong, 2024;
Yamashita and Trinh, 2022). Ultimately, our findings suggest that herbicidal warfare, along
with carpet-bombing, during the Vietnam War induced more than just temporary displace-
ment or “forced-draft urbanization and modernization” (Huntington, 1968, 652); instead,
it served as a catalyst for a lasting demographic erosion that continues to suppress both

population size and growth trajectories.
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A Data Details and Additional Estimates

A.1 Descriptive Statistics

Table A.1 reports the summary statistics of the variables used in the empirical analysis.
Nonbinary variables excepting the running variable, Viet Cong control prevalence, and pop-

ulation growth rates are log-transformed.

A.2 Stellman-National Academy of Sciences HERBS File

The key source of our empirical analysis is the Stellman-National Academy of Sciences (NAS)
version of the Herbicide Report System (HERBS) file (S-NAS HERBS, Stellman et al.,
2003a,b). We first web-scraped the records in the database from the Agent Orange Ware-
house website.! We then converted the geocoordinate information originally recorded in
the military grid reference system (MGRS) format into the longitude-latitude format, and
combined the converted geocoordinates with other mission- and flight-level information.

In addition to the geocoordinates of spray start, turn, end points, the database contains
information about the mission dates, spray methods, and agents and gallons sprayed in
individual missions.” The spray method is categorized into “Fixed-Wing Aircraft,” “Ground
Spraying,” “Helicopter,” and “Unspecified” categories. As Stellman et al. (20035, 323) note,
a majority of herbicide missions was carried out by fixed-wing aircraft (C-123 airplanes),
with 5,961 (65.2%) out of 9,141 missions recorded as aircraft missions. The remaining 3,180
missions include 2,108 (23.1%) missions by helicopters, 446 (4.9%) ground applications, and
626 (6.8%) missions with the method information remaining unspecified. As explained in
the main text, our empirical analysis uses the fixed-wing aircraft missions by the US Air
Force, which dispersed approximately 95% of all herbicides (Stellman et al., 20034, 681-682;

see also, Figure 1 in the main text).

! Available at: http://www.workerveteranhealth.org/milherbs/new/, accessed August 29, 2021.
2For the aircraft navigation system in the 1960s and the development of the tactical air navigation system
(TACAN) distance measuring equipment (DME) in the region, see, for example, Rowley (1975).
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Table A.1: Descriptive Statistics

Observations Mean SD Median IQR
Panel A: Outcome Variables
Population (2001) 716 1.333 0.995 1.193 1.327
Population (2020) 716 1.484 1.109 1.287 1.324
Overall Population Growth Rate 716 0.152 0.319 0.095 0.338
(2001-2020)
Annual Population Growth Rate 13,604 0.008 0.104 0.003 0.074

(2001-2020)

Panel B: Treatment and Assignment Variables

HERB (D" =500m) 716 7.093 1.946 7.488 2.411
Edge Distance (in km) 716 —1.140 2.924 —1.418 4.660
1[EdgeDist,; > 0] 716 0.330 0.470 0.000 1.000

Panel C: Covariates

Key Target Covariates

North Vietnam Army Base Distance 716 2.758 0.730 2.844 1.059
U.S. Base Distance 716 2.996 0.820 3.149 1.065
U.S. Troop Distance 716 4.892 1.276 5.220 1.778
Population (1967-1969) 716 3.143 3.314 0.693 6.524
Forest Presence 716 0.522 0.500 1.000 1.000
Rice Cropland 716 0.300 0.459 0.000 1.000
Road Distance 716 1.463 1.529 1.671 2.248
Slash and Burn Cropland 716 0.251 0.434 0.000 1.000
Viet Cong Control Prevalence 716 0.172 0.325 0.000 0.129
Geographic Covariates

Elevation 716 4.319 1.454 3.850 2.918
Flow Accumulation 716 1.747 2.280 0.693 2.996
Precipitation 716 7.464 0.200 7.446 0.315
Rice Suitability 716 1.619 1.322 1.099 3.258
River Distance 716 —0.199 1.336 —0.068 1.719
Ruggedness 716 1.072 0.786 0.693 0.916

u-Component of Neutral Wind
v-Component of Neutral Wind

Historical Covariates

Bombing Point Distance 716 —0.190 0.822 —0.168 1.215
Border Distance 716 4.330 0.828 4.554 0.798
Number of Neighbor Hamlets 716 2.997 0.879 3.045 1.153
Railway Distance 716 2.992 1.632 3.364 2.069

Notes: SD = standard deviation, IQR = interquartile range.

A.3 Running Variable Coding

The main text explains the coding procedure of the running variable with examples in which
single flight path polygons cover individual hamlets. When multiple flight polygons cover
single hamlets, we follow the same uniform rule for both treated and control hamlets to

measure the running variable, as illustrated by Figure A.1. For the treatment group hamlets,
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Figure A.1: Running Variable Coding with Overlapped Spray Paths

Notes: (a), (b) Dashed and dotted segments represent distinct spray path polygons. Hamlets 2 and 7 are
geographically covered by multiple spray path polygons.

we first take the minimum distance to the kink edges and then assign the maximum, instead
of the minimum, of the minimum distances as its running variable. For example, we assign
the distance to kink edge (1) instead of the distance to kink edge (2) as the running variable
for hamlet 2 (in the treatment group). For the control group hamlets, we first measure the
distances to the kink edges of all flight polygons covering the hamlets, and then assign the
minimum distance as its running variable. For example, the running variable for hamlet 7
(in the control group) in Figure A.1(a) is measured as the distance to kink edge (3) instead
of the distance to kink edge (1).

Note that we follow an identical coding rule to measure the running variable for both
treated and control group hamlets where the running variable is defined as the “signed” dis-
tance from the cutoff as in literature. Specifically, if a hamlet is always located on the spray-
off side (i.e., control group), all distances are negative and the maximum signed distance cor-
responds to the minimum “absolute” distance to the cutoff (e.g., max{—100, —200, =300} =
—100). In contrast, if the hamlet is located on the spray-on side for at least one mission (i.e.,
treated group), the running variable equals the maximum distance among those missions

(e.g., max{100,200, —300} = 200). The difference in the coding rule for the treated and
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control group hamlets reflects the signs of the running variable that takes a positive value
for the treated hamlets and negative values for the control group hamlets.

For example, as illustrated by hamlet 2 in Figure A.1(a), when covered by multiple
flight path polygons, a treated hamlet may be located in the middle of one flight polygon
(e.g., 4 km from kink edge 1) while located closed to the kink edges of another flight path
polygon (e.g., 200 meters from kink edge 2). In this case, a simple minimum distance coding
assigns 200 meters to hamlet 2 as the running variable. However, this coding significantly
underestimates the hamlet’s distance to kink edge because the hamlet is located in the
middle of another flight path and is strongly exposed to the treatment due to the mission
flight with kink edge (1) regardless of its distance to kink edge (2). Our coding rule prevents
this underestimation of the running variable and assigns 4 km instead of 200 meters to the
treated hamlet. Figure A.1(b) illustrates another example with multiple spray paths with
parallel overlaps. The kink edge distances for hamlets 2 and 7 are measured in the same
manner as illustrated with the case of Figure A.1(a) (i.e., distance to kink edge 1 for hamlet

2, and distance to kink edge 3 for hamlet 7).

A.4 Historical Maps and Archival Sources

As explained in the main text, some of our covariates relies on historical maps and archival
sources. As one of the key sources, we originally georeferenced and image-processed the
historical maps of Indochina Atlas published by the Central Intelligence Agency (CIA) in
1970 and later digitized by the University of Texas Libraries.” As shown in Figures A.2(a) to
A.2(c), the Atlas provides a series of maps as of the period including the transportation lines
(i.e., roads, trails, and railways), surface configurations, and crop fields. Figures A.2(d) to

(f) show the image-processed results for transportation lines, forest coverage, and croplands.”

3The digitized (scanned) maps are available at https://maps.lib.utexas.edu/maps/indochina_atlas/ and
https://www.history.navy.mil /research/library /exhibits/maps/indochina-atlas-1970.html.

4For image-processing, we primarily rely on the mean-shift segmentation algorithm implemented in Orfeo
Toolbox (Grizonnet et al., 2017) and the skeletonization algorithm of Tveite (2015). We rely on the same
image-processing procedures to generate the polygons of demarcation line and demilitarized zone (DMZ)
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(d) Road and Railway Network (e) Forest Coverage (f) Rice Croplands and Slash and
Burn Cultivation Areas

Figure A.2: Indochina Atlas Maps and the Image-Processed Vector Objects

Notes: Panels (a), (b), and (c) depict the original (non-georeferenced) scanned maps of Indochina Atlas,
digitized by the University of Texas Libraries. Panels (d), (e), and (f) show the generated vector objects
(lines and polygons). Red and black segments in Panel (d), respectively, indicates roads (including trails)
and railways. Green region in Panel A.2(e) represents forest presence. In Panel (f), green regions represent
rice croplands, and yellow regions indicate the areas with slash and burn cultivation.
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Figure A.3: Locations of U.S. Bases, Troops, and NVA Base Areas

Notes: Dots in each panel indicate, respectively, (a) U.S. Air Force and Navy bases, (b) U.S. Army and
Marine troop locations, and (c) suspected areas of North Vietnam Army (NVA) base areas in and near
South Vietnam. Dots in (c) represent the geocoordinates of the “approximate center” of the suspected
NVA base areas (National Archives and Records Administration. 2007. “Reference Copy of Technical
Documentation for Accessioned Electronic Records: Enemy Base Area File (BASFA), 7/1967-7/1971,
Translation File, RG 330, Records of the Office of the Secretary of Defense” pp.26-27. Available at:
https://catalog.archives.gov/id /2573252, accessed June 16, 2023).

We rely on several other sources to measure the historical landscape of military bases
and troops. Suspected areas of North Vietnam Army (NVA) base are retrieved from the
Enemy Base Area File (BASFA), July 1, 1967-July 1, 1971 hosted by the National Archives
and Records Administration (NARA).” The locations of U.S. Air Force and Navy bases and
U.S. Army and Marine troops are retrieved from the S-NAS HERBS database. Figure A.3
depicts the spatial distributions of U.S. bases, U.S. troop locations, and the suspected areas

of NVA bases in and near South Vietnam.

from CIA’s “Vietnam demarcation line and demilitarized zone. 12-66” map as of 1966 (https://www.loc.
gov/resource/g8021f.ct002840/, accessed September 22, 2021).

SNational Archival Identifier 2573252; Accession Number of NN3-330-76-037. Available at: https://
catalog.archives.gov/id /2573252, accessed June 16, 2023.
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A.5 Naive OLS Estimates

Table A.2 reports the uninstrumented, naive ordinary least square (OLS) version of the main
fuzzy regression kink (RK) specification with population size in 2001 and 2020 as outcomes.
As briefly reported in the main text, compared with the main RK estimates, the naive OLS
estimates underestimate or even fail to detect the negative association between herbicide
exposure and contemporary population size revealed in Table 1.

The RK-OLS discrepancy may reflect (1) bias in the OLS estimates induced by confound-
ing bias and measurement error, (2) bias in the RK estimates, (3) bias in both estimates,
and (4) the difference in the estimands (average treatment effect, ATE, and the LAR or
TT effect). Given the nonrandom nature of herbicide assignment, we mainly attribute the

difference between the OLS and RK estimates to the bias remaining in the OLS estimates.

Table A.2: Herbicide Exposure and Contemporary Population Size, Naive OLS Estimates

Panel A: In Population (2001)

(1) (2) (3) (4) ()
InHERB —0.074** —0.039 —0.049 —0.052* —0.051*
(0.036) (0.031) (0.031) (0.030) (0.030)
Adjusted R?2 0.627 0.735 0.758 0.765 0.769
Panel B: In Population (2020)
(1) (2) (3) (4) ()
InHERB —0.089** —0.057 —0.066* —0.069** —0.068**
(0.040) (0.035) (0.034) (0.033) (0.033)
Adjusted R2 0.639 0.730 0.753 0.757 0.760
Observations 519 519 519 519 519
Avg. N neighbors (Conley SE cluster) 27.5 27.5 27.5 27.5 27.5
Key Target Covariates v v v v
Geographic Covariates v v v
Historical Covariates v v
In Spatially-Lagged HERB v
Fixed effects and f(Lon, Lat) v v v v v

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Conley (1999) standard errors adjusted for spatial clustering
with a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base
distance, population (1967-1969), U.S. base distance, U.S. troop distance, forest presence, rice cropland,
road distance, slash and burn cropland, Viet Cong control prevalence. Geographic covariates: Precip-
itation, temperature, u- and v-components of neutral wind, elevation, flow accumulation, rice suitability,
river distance, ruggedness. Historical covariates: Bombing point distance, border distance, number
of neighbor hamlets, railway distance. In spatially-lagged HERB is the logged average HERB among the
neighbor hamlets with a 30 km cutoff. Fixed effects: Agent fixed effect, province fixed effect, end-leg
fixed effect, mission phase fixed effect.
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B Identification Assumption

B.1 Running Variable Distribution

A valid fuzzy RK design hinges on the smoothness assumption, which yields several testable
implications (Card et al.,; 20155). The first testable implication of the smoothness assumption
requires a running variable continuously differentiable at the kink point. To empirically
validate the implication, Figure B.1 examines the continuity of the running variable using
the estimator of Cattaneo et al. (2020). Consistent with the identification assumption, the
density test fails to detect discernible or statistically significant discontinuity in the running
variable at the kink point (t = —0.209 and p = 0.835).

Second, the smoothness assumption requires not only the absence of discontinuity but
also the absence of a slope change in the running variable distribution at the kink point. To
further validate the smoothness assumption, we follow the approach of Bana et al. (2020),
Card et al. (20154,b), and Landais (2015) and test for the kink in the running variable distri-
bution via polynomial regressions. Formally, and with abuse of notation, we first aggregate
the hamlet observations using bins with different sizes based on the running variable and

then estimate the following regression model:

Ng* = B1[EdgeDist, > 0] + [’ypEdgeDistjg + §,EdgeDist;, - 1[EdgeDist;, > 0]] +e, (B.1)
p=1

where b indexes bins, N°"' reflects the number of observations in each bin, EdgeDist is the
midpoint of EdgeDist of each bin, and P is the polynomial order. The coefficient on the
interaction between the linear of the running variable and the treatment group indicator, 41,
captures the change in the slope of the probability density function of the running variable at
the kink point. We repeatedly estimate the polynomial regression using different bin widths
ranging from 50 meters to 500 meters with an increment of 50 meters and the running
variable polynomial orders ranging from 2 to 6.

Figure B.2 summarizes the polynomial regression results by plotting the coefficient es-
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Figure B.1: Continuity of the Running Variable Distribution

Notes: Gray bars represent the histogram estimates of the running variable, EdgeDist. Solid and dashed
lines indicate the local polynomial density estimates and the corresponding 95% confidence intervals
(Discontinuity test: ¢ = —0.209 and p = 0.835). The discontinuity estimate is computed using the
procedure of Cattanco et al. (2020), with the running variable recentered at zero.

timates on the interaction term between the treatment group indicator and the (linear)
running variable (41). Triangles in each panel and Panel (f) indicate the estimates obtained
from the smallest Akaike Information Criterion (AIC) value for each bin size. Regardless of
the bin size and polynomial order, the coefficient estimates remain statistically insignificant
at the 5% level. The polynomial regressions reveal no discernible slope change in the running

variable distribution at the kink point and fail to invalidate the current RK strategy.

B.2 Covariate Distribution

Another key testable implication of the smoothness assumption involves covariate distribu-
tions around the kink point. The validity of the current RK design would be undermined if
predetermined covariates, along the treatment, exhibit discernible kink around the cutoff.’

We examine the validity of the assumption by subsequently estimating the first-stage spec-

6Seen from the instrumental variable (IV) perspective, a key assumption here is that the instrument,
EdgeDist x 1[EdgeDist > 0], affects the outcome (slope change) only through the treatment (slope change).
A kink in a covariate can also be viewed as a sign of exclusion restriction violation such that the instrument
affects the outcome through the covariate, not exclusively through the treatment.
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Figure B.2: Kink Estimates in the Running Variable Distribution

Notes: Dots represent the kink estimates obtained from polynomial regressions (§; in equation B.1), with
the running variable polynomial order specified as in the figure labels and bin sizes on the vertical axis.
Triangles represent the estimates obtained from the model with the smallest Akaike Information Criterion
(AIC) for each bin size. Horizontal segments represent the 95% confidence intervals.

ification of equation (3) with the left-hand-side variable, In HERB, replaced by one of the
covariates. We estimate the placebo kink estimate with and without adjustments for the re-

maining covariates, with the baseline bandwidth b = 4 km as in Table 1 in the main text. The
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Figure B.3: (Standardized) Covariate and Treatment Kink Estimates

Notes: Symbols represent the reduced-form kink estimates with the variable on the vertical axis as the
outcome variables, with (solid) and without adjustments for the remaining covariates (hollow). Horizontal
segments represent 95% confidence intervals based on Conley (1999) standard errors with a 30 km cutoff
and a Bartlett kernel (not corrected for multiple testing). All nonbinary variables are standardized.

smoothness assumption requires that the coefficient on EdgeDist x 1[EdgeDist > 0] remains
indistinguishable from zero once we replace the left-hand-side variable with covariates.
Figure B.3 summarizes the (standardized) kink estimates with (hollow symbols) and
without adjustments for the remaining covariates (solid symbols), along with the treatment
kink estimates (top row triangles). In a sharp contrast with the treatment slope change,
and consistent with the identification assumption, most of the placebo regressions fails to
detect a discernible slope change around the kink point. Exceptions include the substantively
small but statistically significant estimates for U.S. base distance (coef. = 0.078,¢ = 2.559)
and the marginally significant estimates for border distance (coef. = 0.043,¢ = 1.657)
when adjusting for the remaining covariates (solid symbols), terrain ruggedness (coef. =

—0.098,t = —1.696) without covariate adjustments (hollow symbols), and forest presence

All



RV Randomization, without Covariate Adjustment

Border Distance Forest Presence Ruggedness US Base Distance
RV randomization p-value=0.061 RV randomization p-value=0.108 RV randomization p-value=0.137 RV randomization p-value=0.328
E 0.05 0.10 0.0 -0.2 -0.1 0.0 0.1 0.2

Estlmated (Standard|zed) K|nk

RV Randomization, with Covariate Adjustment

Border Distance Forest Presence Ruggedness US Base Distance
RV randomization p-value=0.032 RV randomization p-value=0.129 RV randomlzatlon p-value=0.350 RV randomization p-value=0.097
0.05 0.10 0.0 -0.1 0.0 0.1

Estlmated (Standard|zed) K|nk

Figure B.4: Running Variable Randomization Inference

Notes: Each panel shows the histogram of 10,000 placebo kink estimates for the outcome in the top label.
We randomly assign (permute) the running variable to the sample hamlets, and then estimate the
reduced-form (or first-stage) version of the RK specification with (bottom row panels) and without
covariate adjustments (top row panels) for 10,000 times. Solid vertical segments indicate the actual kink
estimates with the observed running variable. The randomization (two-sided) p-values in the top labels
indicate the share of the absolute placebo coefficients that are larger than the absolute actual coefficient.

(coef. = —0.048,¢t = 1.623 without covariate adjustments and coef. = —0.038,¢t = —1.638
with covariate adjustments).”

Nonetheless, the running variable (RV) randomization exercise disagrees with asymptotic
inference and fails to negate that the covariate kink are generated by chance. As in Table 1,
we randomly assign the running variable to the sample hamlets and estimate the placebo kink
coefficient for 10,000 times. The randomization two-sided p-value indicates the share of the
absolute placebo coefficients that are larger than the absolute actual coefficient. Figure B.4
shows the histograms of the (standardized) placebo estimates and the corresponding actual

estimates (vertical lines), with the corresponding randomization p-values larger than 0.05

"Given one treatment and 22 covariates (23 variables) in Figure B.3, the probability of a Type I error in
which one falsely rejects at least one null hypothesis with a = 0.05 is 69.3% (1 — 0.95%% = 0.693).
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excepting for border distance with covariate adjustments (randomization p = 0.032).

A natural and substantively important question is on how the covariate kink affects
the main findings. A focused exercise in Appendix C, however, suggests that the RK es-
timates remain stable across all possible model specifications (covariate combinations) and
outcomes, and reveals little sign of model dependence. Along with the little evidence of

model dependence, the covariate kink test fails to invalidate the current RK design.

C Robustness Check

C.1 Confounding Nonlinearity and Model Dependence

One may wonder how the kink in covariates and model specification influence the main
findings. Related to this point, Ando (2017) underlines the susceptibility of RK estimates to
the failure to adjust for confounding nonlinearity. A simple, crude way to address this concern
for confounding nonlinearity is to estimate all possible model specifications to generate the
empirical distributions of the coefficient estimates, and compare the reported estimates with
the resultant distributions. The underlying idea is that if the current RK design suffers
confounding kink, the estimates should be sensitive to the choice of covariate adjustments.
Specifically, we repeatedly estimate the reduced-form model of Equation (2) in the main
text with each covariate combination and three cross-sectional outcomes.® Given that our
covariate set includes 22 covariates along with the fixed effects and the longitude-latitude
polynomial, the number of possible model specifications amounts to 22! = 2,097, 152 for each
outcome, treating the u- and v-components of neutral winds as a single block and omitting
the spatially-lagged EOI and interaction terms.” We estimate each model specification using

the sample hamlet with the baseline bandwidth of b = 4 km as in Table 1 in the main text.

8This exercise relies on the cross-sectional setup given the qualitative similarity of annual (panel) and
overall (cross-sectional) population growth rate estimates in Figure 4 in the main text.

9To improve computational efficiency, we always jointly include or exclude the u- and v-components of
neutral winds, while treating all remaining covariates independently.
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Outcome: Overall Population Growth Rate (2001-2020)

(1) All Model Specifications (2) Adjusting for Border Distance  (3) Adjusting for Forest Presence (4) Adjusting for Ruggedness (5) Adjusting for US Base Distance
(mean=0.044; median=0.044) (mean=0.043; median=0.043) (mean=0.044; median=0.044) (mean=0.044; median=0.044) (mean=0.044; median=0.044)
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Outcome: In Population (2001)
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Outcome: In Population (2020)
(1) All Model Specifications (2) Adjusting for Border Distance  (3) Adjusting for Forest Presence (4) Adjusting for Ruggedness (5) Adjusting for US Base Distance

(mean=0.164; median=0.163) (mean=0.161; median=0.161) (mean=0.163; median=0.163) (mean=0.160; median=0.160) (mean=0.173; median=0.172)
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Figure C.1: Empirical Distribution of Second-Stage RK Estimates, All Possible Specifications

Notes: Density histograms in each row plot the empirical distributions of (subsets of) 22! = 2,097,152 RK
model specifications for three cross-section outcomes, with different covariate adjustment conditions
denoted in the top text labels. Thin solid and dashed vertical segments indicate the mean and median
estimates in each panel. Bold solid and dotted vertical segments represent the reduced-form estimates with
the specifications of Model 1 (without covariates, solid) and Model 4 (with all covariates, dotted) in

Table 1 in the main text.

Figure C.1 summarizes the result of the “try-all” exercise. To explicitly examine how the
adjustments for the variables in Figure B.4 affect the estimates, Figure C.1 presents density
histograms for RK estimates of, from the left, (1) all possible 2,097,152 models, (2) 2%° =

1,048,576 models adjusting for border distance, (3) 1,048,576 models adjusting for forest
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presence, (4) 1,048,576 models adjusting for terrain ruggedness, and (5) 1,048,576 models
adjusting for U.S. base distance for each outcome. Thin solid and dashed vertical segments
indicate the corresponding mean and median estimates of the empirical distributions, and
bold solid and dotted segments indicate the reduced-form estimates of Model 1 (without
covariates) and Model 4 (adjusting for all covariates) in Table 1 in the main text.

The key results are threefold. First, across the outcomes, the empirical distribution of
RK estimates is close to a normal distribution (with slight skews in population size in 2001
and 2020), suggesting that covariate combination does not play a major role in altering
the RK estimates beyond random error. Second, the adjustment for border distance and
other covariates is unlikely to alter the RK estimate. As graphically illustrated by the
similarity between the panels in each row, the RK estimate distribution remains almost
unchanged regardless of covariate adjustments, with almost identical sample mean (solid
vertical segment) and median estimates (dashed segment). Third, the baseline reduced-form
estimates (indicated by the bold solid and dotted segments) align closely with the means and
medians of the empirical coefficient distributions. Specifically, models with the full set of
covariates (dotted segments) slightly underestimate the reduced-form kink, whereas models
without covariate adjustments (bold solid segments) tend toward overestimation. The mean
and median of the distribution are bracketed by these two specifications.

Combined, these results suggest that the covariate kink and the choice of covariate ad-
justments are unlikely to affect the inference severely, and the main findings are unlikely to

be a product of arbitrary model picking or (observed) confounding nonlinearity.

C.2 Flight Buffer Width and Half-Decay Distance

Admittedly, the main RK estimates rely on an arbitrary combination of two parameters,
flight buffer width and half-decay distance, to obtain the RK sample and measure the
hamlet-level herbicide exposure score, HERB. As explained in Section 4 of the main text

and Section A.3, flight buffer width defines the sample hamlets used in the RK estimation,
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Figure C.2: RK Estimates with Different Flight Buffer Width and Half-Decay Distance Settings

Notes: Symbols represent the second-stage RK estimates with different flight buffer widths (indicated by
symbols) and the half-decay distance parameter on the vertical axis, for each of the outcome variables in
the column labels. Horizontal segments display the 95% confidence intervals based on Conley (1999)
standard errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and
hamlet-level clustering for the panel setup. Red solid triangles with half-decay distance = 500 m indicate
the baseline estimates reported in Table 1 and Figure 4 in the main text. All estimates rely on the baseline
bandwidth of 4 km and the model specification of model (1) in Table 1. Panel specification further adjusts
for a year fixed effect.

and the half-decay distance parameter determines HERB (Equation 1 in the main text).
To examine the robustness to the particular parameter setting, Figure C.2 reestimates

the RK model with alternative parameter combinations. While the coefficient size varies,

the negative association between herbicide exposure and contemporary population outcomes

remains robust across different RK samples and distance-decay parameter values.

C.3 Counterinsurgency Strategy and Jackknife Estimates

A remaining but important concern for the current RK design is that the results might be
driven by unobserved confounding kink such as counterinsurgency strategies and authoriza-
tion procedure of herbicide missions. During the Vietnam War, the U.S. military divided
South Vietnam into four Corps Tactical Zones (CTZs) commanded by different military
branches and implemented distinct counterinsurgency strategies in individual CTZs. Dell

and Querubin (2018, 51-54) exploit the CTZ I-1I boundary as one of the sources for causal
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Figure C.3: Corps Tactical Zone-Level Jackknife

Notes: Symbols represent the RK estimates with subsamples dropping the hamlets in the Corps Tactical
Zone on the vertical axis. Horizontal segments display the corresponding 95% confidence intervals based on
standard errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and
hamlet-level clustering for the panel setup. All estimates rely on the baseline bandwidth of 4 km and the
specification of model (1) in Table 1. Panel specification further adjusts for a year fixed effect.

identification, given the historical fact that the U.S. Marine Corps (USMC) in Corps Region
I implemented a moderate hearts-and-minds-oriented strategy and small-unit operations,
while the U.S. Army commanded Corps Region II and emphasized overwhelming firepower
and large-scale operations. Similarly, as briefly explained in the main text, the authoriza-
tion process of herbicide missions involved the South Vietnam Government, both at the
national and local levels, and the U.S. at the levels of the U.S. Ambassador, the commander
of the U.S. Military Assistance Command, Vietnam (MACV), and the CTZ commanders
(Buckingham, 1982, 37; ToM, 1995, 86).

Although the baseline specification includes a district fixed effect, we rely on CTZ-level
and province-level jackknife approaches to more explicitly gauge the impact of the CTZs
and corresponding differences in counterinsurgency strategies have on the reported RK es-
timates. Figure C.3 reports the jackknife estimates using a subsample dropping the hamlet
observations located in the CTZ on the vertical axis. As the CTZ boundaries follow the

preexisting provincial boundaries, and given the role of province chiefs in Ranch Hand mis-
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Figure C.4: Province-Level Jackknife

Notes: Symbols represent the RK estimates with subsamples dropping the hamlets in the province on the
vertical axis. Horizontal segments display the corresponding 95% confidence intervals based on standard
errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and hamlet-level
clustering for the panel setup. Triangles and vertical dashed segments indicate the baseline estimate in
Table 1 and Figure 4 in the main text. All estimates rely on the baseline bandwidth of 4 km and the model
specification of model (1) in Table 1. Panel specification further adjusts for a year fixed effect.

0.0 -

Overall Population Growth Rate

sions, Figure C.4 presents a similar jackknife exercise in which hamlet observations in the

province on the vertical axis dropped from the subsample for RK estimate. While the sample

size and statistical significance vary, the negative coefficient estimates remain qualitatively

unchanged across subsamples.

C.4 Unobserved Confounding Forces and Sensitivity Analysis

We also use a sensitivity analysis approach to examine how sensitive the main findings are

to unobserved confounding nonlinearity. Table C.1 reports the reduced-form and first-stage

versions of the main RK specification in Table 1 in the main text. The “robustness values” in

each panel indicate the percentage of residual variance that unobserved confounders would
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Table C.1: Reduced-Form and First-Stage Estimates with Robustness Values

Panel A: In Population (2001)

(1) (2) (3) (4) (5)
EdgeDist x 1[EdgeDist > 0] 0.150*** 0.145*** 0.119*** 0.111*** 0.107***
(0.046)  (0.042)  (0.039)  (0.040)  (0.040)
Robustness Value 43.1% 45.2% 41.6% 38.49% 37.4%
Adjusted R2 0.627 0.740 0.760 0.766 0.770
Panel B: In Population (2020)
(1) (2) (3) (4) (5)
EdgeDist x 1[EdgeDist > 0] 0.195*** 0.191*** 0.160*** 0.154*** 0.150***
(0.050)  (0.045)  (0.042)  (0.044)  (0.044)
Robustness Value 49.25% 51.6% 48.21% 45.71% 44.79%
Adjusted R2 0.641 0.736 0.756 0.759 0.762
Panel C: In HERB
(1) (2) (3) (4) (5)
EdgeDist x 1[EdgeDist > 0] —0.569"*  —0.552"**  —0.565"* —0.564"** —0.564**
(0.081)  (0.075)  (0.072)  (0.070)  (0.070)
Robustness Value 69.02% 70.53% 72.69% 73.31% 73.49%
Adjusted R? 0.570 0.609 0.613 0.617 0.617
Observations 519 519 519 519 519
Avg. N neighbors (Conley SE cluster size) 27.5 27.5 27.5 27.5 27.5
Key Target covariates v v v v
Geographic covariates v v v
Historical covariates v v
In spatially-lagged HERB v
Fixed effects and f(Lon, Lat) v v v v v

Notes: *p < 0.1; **p < 0.05; *p < 0.01. Conley (1999) standard errors adjusted for spatial clustering
with a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base distance,
population (1967-1969), U.S. base distance, U.S. troop distance, forest presence, rice cropland, road
distance, slash and burn cropland, Viet Cong control prevalence. Geographic covariates: Precipitation,
temperature, u- and v-components of neutral wind, elevation, flow accumulation, rice suitability, river
distance, ruggedness. Historical covariates: Bombing point distance, border distance, number of
neighbor hamlets, railway distance. In spatially-lagged HERB is the logged average HERB among the
neighbor hamlets with a 30 km cutoff. Fixed effects: Agent fixed effect, province fixed effect, end-leg
fixed effect, mission phase fixed effect. Robustness values indicate the percentage of residual variance
that unobserved confounders would need to explain in order to eliminate the reported kink coefficients.

need to explain away the reported kink estimates (Cinelli and Hazlett, 2020). For both
reduced-form and first-stage estimates, the robustness values suggest only implausibly strong

unobserved confounders are capable of eliminating the main RK estimates.'” More precisely,

OWe report reduced-form and first-stage estimates as the robustness value measures the strength of
unobserved confounding by partial R2. Note also that the RK estimand, Trk, can be written as the ratio of
the reduced-form slope change (i.e., outcome slope change at the kink point) relative to the first-stage slope
change (i.e., treatment slope change at the kink point) as (Card et al., 20150):

) / < lim,, 1o d(E[D|V = v]) im0 d(E[D|V = 0])

dv v=vp dv

- _ hm’UOJrO d(E[YlV = U]) . limUOTO d(E[YlV = ’U])
RK do S A

b
v=wg
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the robustness values indicate that unobserved confounders would need to explain at least
37.4% (Model 5, Panel A) or 44.79% (Model 5, Panel B) of the residual variance of both the
instrument (EdgeDist x 1[EdgeDist > 0]) and the outcome (In population in 2001 or 2020)
to eliminate the reduced-form association. Similarly, unobserved confounders would need to
explain at least 69.02% (Model 1, Panel C) of the residual variance of the instrument and
the EOI (In HERB) to eliminate the first-stage association. Given the battery of covariate
adjustments in addition to the geocoordinate polynomial and fixed effects, it is implausible

that a (combination of) confounding kink is driving the finding.

where V denotes the running variable, vg the kink point, and D the treatment. The reduced-form (first-stage)
robustness value can be interpreted as a sensitivity measurement for the numerator (denominator).
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