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Abstract

We investigate the legacies of herbicidal warfare on population size and growth in Viet-
nam in 2001–2020. The identification strategy exploits the flight-level military records
and the plausibly exogenous hamlet-level variation in herbicide exposure around the
spray-on, direction-change, and spray-off points of fixed-wing aircraft missions, com-
bined with a fuzzy regression kink design. The elasticity estimate suggests that a 5%
increase in herbicide exposure in the Vietnam War is associated with a decrease in
population size of 0.80–0.99% in 2001 and 1.24–1.43% in 2020. We also find nega-
tive associations between herbicide exposure and overall and annual population growth
rates.

Word Count
5, 996 words (excluding the title page, reference list, and exhibits)

Keywords
conflict, development, herbicide, historical legacies, Vietnam War

JEL Classifications
J1, N4, N9, R1

Declarations of Interest
None

∗We thank Masaaki Higashijima, Yoshiaki Kobayashi, Vally Koubi, Adeline Lo, Wakako Maekawa, session
participants of the 2022 Annual Meeting of the American Political Science Association, the 2022 Annual
Meeting of the Japan Society for International Relations, the 2023 Pacific International Politics Conference,
and seminar participants at Hiroshima University, Kyoto University, and University of Toyama for valuable
comments and suggestions. Financial support from the Japan Society for the Promotion of Science (JSPS)
is gratefully acknowledged (Grant Numbers 18KT0054 and 20K01464). All remaining errors are ours.

†Associate Professor, Graduate School of Economics, Osaka Metropolitan University. 3–3–138 Sugimoto,
Sumiyoshi, Osaka 558–8585, Japan. Email: gaku@omu.ac.jp. URL: https://gaku-ito.github.io. Correspond-
ing author.

‡Assistant Professor, Hitotsubashi Institute for Advanced Study, Hitotsubashi University. 2–1 Naka,
Kunitachi, Tokyo 186–8601, Japan. Email: duc.tran@r.hit-u.ac.jp. URL: https://ductran-data.github.io.

§Professor, Graduate School of Humanities and Social Sciences, Hiroshima University. 1–5–1
Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8529, Japan. Email: yuichiro@hiroshima-u.ac.jp.

1

mailto:gaku@omu.ac.jp
https://gaku-ito.github.io
mailto:duc.tran@r.hit-u.ac.jp
https://ductran-data.github.io
mailto:yuichiro@hiroshima-u.ac.jp


1 Introduction

Does a temporary shock of large-scale violence leave lasting effects on socioeconomic out-

comes? In some instances, exposure to violence persistently depletes human capital and

undermines interpersonal and institutional trust (e.g., Grasse, 2023; Lichter, Löffler and

Siegloch, 2020; Nunn and Wantchekon, 2011). Elsewhere, forms of violence improve po-

litical engagement, social cohesion, and altruism (e.g., Bauer et al., 2016; Berman, Clarke

and Majed, 2023; Blattman, 2009). Several studies also highlight a rapid recovery or catch-

up growth of economic and population outcomes in post-war societies, with the impact of

wartime destruction remaining short-lived (e.g., Brakman, Garretsen and Schramm, 2004;

Davis and Weinstein, 2002, 2008; Miguel and Roland, 2011; but see Bosker et al., 2007).

This article joins the growing literature with new evidence from the herbicide spray in the

VietnamWar. While earlier works highlight a powerful recovery from the destruction (Miguel

and Roland, 2011), recent literature finds persistent effects of U.S. bombing on development

and health outcomes in Cambodia (e.g., Lin, 2022), Laos (e.g., Riaño and Caicedo, 2021;

Yamada and Yamada, 2021), and Vietnam (e.g., Palmer et al., 2019; Singhal, 2019). Most

closely related to this article, Appau et al. (2021), Le, Pham and Polachek (2022), and

Yamashita and Trinh (2022) examine the legacies of herbicidal warfare. For example, Appau

et al. (2021) underline a persistent negative association between the district-level herbicide

exposure and the household agricultural productivity, trust levels, and economic production.

In a similar vein, Le, Pham and Polachek (2022) find a commune-level positive association

between herbicide exposure and the immediate and detrimental prevalence of health disease

and mobility disability in the cohort born before the spay mission ended in 1971.

While the existing insights are valuable, there remain challenges for causal identification

primarily due to the commonly used, district-level or commune-level geographic aggrega-

tion. This is unfortunate, as the distribution of herbicide exposure is partly a function of

micro-level factors including climate and wind conditions, local geography, and instantaneous

decision of aircraft pilots besides initial mission plans. The commonly-employed geographic
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aggregation risks masking such micro-level variation that would be valuable for causal iden-

tification. An alternative, straightforward empirical strategy is to exploit the micro-level

variation with geographically less intensive aggregation, which we adopt in this article.

Here, we combine the fine-grained archival data previously unused at the original, flight-

level scale with a fuzzy regression kink (RK) design to address the identification challenge

arising from the nonrandom nature of herbicide exposure. Indeed, historical records suggest

that Operation Ranch Hand (1962–1971) missions intended to prevent directly damaging

densely populated areas and croplands not under Viet Cong control (MACV, 1969), which

would introduce bias into naive comparisons. To surmount such identification challenges, our

RK strategy leverages the uncontrollable, natural experimental variation in the hamlet-level

exposure to herbicide around the spray-on, direction-change, and spray-off points of fixed-

wing aircraft missions. To capture the micro-level variation in herbicide missions, we rely

on the spray flight-level records documented in the Stellman-National Academy of Sciences

version of the Herbicide Report System file (S-NAS HERBS, Stellman et al., 2003a,b).

The RK analysis reveals lasting legacies of herbicidal warfare. The elasticity estimate

suggests that a 5% increase in herbicide exposure, which is observed within a 1 km distance

from the spray start, turn, and end points, is associated with a 1.24–1.43% decrease in

population size in 2020. The analysis also reveals negative associations between the herbicide

shock and overall and annual population growth rates in 2001–2020. While the discrepancy

might arise from different units of analysis, the previously unseen patterns run counter to

the conventional wisdom of a powerful recovery of population from wartime destruction.

2 Data

2.1 Stellman-National Academy of Sciences HERBS File

To measure the landscape of herbicide spray, we rely on the military archival records of the

Stellman-National Academy of Sciences version of the Herbicide Report System file (S-NAS
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HERBS) database (Stellman et al., 2003a,b). The S-NAS HERBS is a compilation of military

mission records of the HERBS file originally developed by the U.S. Department of Defense

with corrections, containing 9,141 reports of the spray missions with several spray methods

(i.e., fixed-wing aircraft, helicopters, and ground-spraying) in 1961–1971. A record in the

database corresponds to a single mission with one or more spray paths. Figure 1 shows

the geographical and temporal distributions of the mission records. As elaborated in detail

below, the following analysis relies on the aircraft missions that dispersed approximately

95% of herbicides (Stellman et al., 2003a, 681–682).1

A noteworthy aspect of the S-NAS HERBS is its geocoding accuracy. Besides mission

dates, spray methods, agent, and gallonage information, the database documents “the actual

flight paths taken by Ranch Hand aircraft as they carried out their spray missions,” with the

“locations at which the aircraft switched directions or turned off and on their spray nozzles”

(Stellman et al., 2003b, 323), thereby providing a detailed landscape of spray missions.2

2.2 Treatment: Herbicide Exposure

We use hamlets in South Vietnam as the unit of analysis in the following analysis, based

on the geocoordinates (points) recorded in the Vietnam Hamlet Evaluation System (HES)

Gazetteer Data (Douglass, 2011). To quantify the hamlet-level exposure to herbicide, we

broadly follow the distance-weighted approach of Stellman and Stellman (1986, 309) as:

HERBi =
∑
j∈H

Gj · e−λDij , (1)

where i indexes hamlets and j spray flight “legs” of the fixed-wing aircraft missions. Follow-

ing Stellman et al. (2003b, 325), we first split individual flight paths (contiguous lines) into

1We discard 91 errant entries of “fixed-wing aircraft” records with single (not multiple) geocoordinates.
2To navigate aircraft and record spray-on, direction-change, and spray-off points, the tactical air naviga-

tion (TACAN) system distance measuring equipment (DME) was well-developed in Southeast Asia by the
1960s. During mission flights, TACAN/DME continuously offered geographical navigation using the (short)
ultra high frequency (UHF) radio range (Rowley, 1975). An essentially same navigation system guided civic
aviation until the mid-1990s or before the civic use of the global positioning system (GPS).
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(a) Gallons Sprayed (b) Spray Methods

(c) Gallons Sprayed by Spray Methods (d) Number of Missions by Spray Methods

Figure 1: Herbicide Spray Missions

Notes : Segments in maps represent the spray paths. (a) Shading is proportional to the quantity of sprayed
herbicide in gallons sprayed by individual spray legs (straight lines without a turn). (b) Colors indicate
distinct spray methods. Thick gray lines indicate international borders. Thin gray lines and polygons
represent major water bodies. (c), (d) Yearly distribution of herbicide spray (in 1,000 gallons) and spray
methods, omitting four helicopter missions in 1961. DMZ = demilitarized zone.
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distinct flight legs indicated by the straight lines without turns. As the gallonage informa-

tion is aggregated at the mission level, we divide and assign the total mission-level herbicide

quantities to individual legs in proportion to its spray run length.3 Gj indicates the quan-

tity of the herbicides sprayed in leg j in gallons, H is a set of all spray flight legs, and Dij

represents the geodesic distance between hamlet i and flight leg j. λ = ln(2)
DHalf is an arbitrary

parameter, where DHalf determines the distance at which the herbicide exposure decays to

the half of a “direct” (zero-distance) hit with Dij = 0, with the baseline of DHalf = 500 me-

ters. For a robustness check purpose, Appendix C.2 reestimates the main regressions with

alternative half-decay distance parameters of 100 meters, 250 meters, and 1 km.

2.3 Outcome: Population Size and Growth Rate

The following analysis focuses on contemporary population size and population growth rate

as outcome variables. We rely on the WorldPop data, which provides geographically disaggre-

gated records of population estimates at 100 meter level on an annual basis in the 2001–2020

period.4 To construct the population size variable, we first extract the annual records of

population counts at the hamlet locations, and take the natural logarithm of the variable

after adding 1. The (logged) overall and annual population growth rates, respectively, are

measured as lnPopulation2020 − ln Population2001 and lnPopulationt − ln Populationt−1.

2.4 Covariates: Key Spray Targets and Related Attributes

To facilitate the empirical analysis, we combine archival sources and several geographical

databases to construct three sets of covariates. The first set of covariates measures the

proximity to the key spray targets. Operation Ranch Hand involved two primary objec-

tives, forest defoliation and destruction of enemy food supplies, with key targets including

3For example, if a mission includes one flight with four legs (three turns) with an equal leg length sprayed
1,000 gallons in total, we assign 250 gallons to each flight leg.

4Available at: https://www.worldpop.org, accessed August 6, 2021. Due to errant entries, we exclude the
population estimates in 2000 from the analysis.
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“base camps and fire support bases...lines of communication, enemy infiltration routes, and

enemy base camps” (Institute of Medicine, 1995, 85). The mission authorization process

also intended to prevent damage to densely populated areas and crops not under Viet Cong

(VC) control (MACV, 1969). To measure proximity to the key spray targets, we include

the prevalence of VC control in 1967–1969 (HES, McCormick, 2021), geodesic distances to

suspected areas of North Vietnam Army (NVA) bases (Enemy Base Area File, BASFA), U.S.

Air Force and Navy bases, U.S. Army and Marine troops in 1961–1971 (S-NAS-HERBS),

and roads (including trails, Indochina Atlas), average hamlet population size in 1967–1969

(HES, Douglass, 2011), and dummy variables for the presence of rice croplands and slash

and burn cultivation (Indochina Atlas), with the details described in Appendix A.4.5

Second, geographic covariates include mean elevation and its standard deviation as a

proxy of terrain ruggedness (USGS, 1996), soil suitability for rice cultivation (Zabel, Putzen-

lechner and Mauser, 2014), distance to rivers, flow accumulation (Lehner, Verdin and Jarvis,

2008), a dummy variable for forest presence (Indochina Atlas), and average precipitation

and wind speed (1970–2000, Fick and Hijmans, 2017). Finally, historical covariates are the

number of hamlets within a 30 km radius,6 distance to railways (Indochina Atlas) and inter-

national borders (as of the Vietnam War period), and the average of the annual minimum

distance to aerial bombing drop points in 1965–1971 (Defense Digital Service, 2016).

3 Identification Strategy: Fuzzy Regression Kink

To explore the evidence of causal effects, we rely on a fuzzy regression kink (RK) design

that exploits the exogenous fluctuations in herbicide exposure within geographically small

areas around the spray start, turn, and end points. Recall that the S-NAS-HERBS database

5Where multiple hamlet-month observations are available, VC control measures the average of a dummy
variable indicating VC control. To measure road proximity and cropland presence, we georeferenced and
image-processed the maps of Indochina Atlas compiled by the Central Intelligence Agency (CIA) in 1970.
For the locations of NVA bases, we rely on the Enemy Base Area File (BASFA), July 1, 1967–July 1, 1971.

6The 30 km cutoff reflects the historical facts of Ranch Hand missions and standard error clustering in
the regression estimation. See model specification section for details.
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that documents the “actual flight paths” and the “locations at which the aircraft switched

directions or turned off and on their spray nozzles” (Stellman et al., 2003b, 323).7 The core

idea behind our RK strategy is that the locations at which aircraft makes turns and turned

on and off spray nozzles and the herbicide dispersal were, at least partly, uncontrollable.

Besides intended targets, the realized distribution of herbicide was driven by plausibly ex-

ogenous micro-level factors including climate conditions, wind, terrain, and turbulence from

the aircraft as well as ground fire hits (Institute of Medicine, 1995, 86–87). Consistent with

the identification idea, “[t]he responsibility for flying the C-123 during the crucial spraying

part of each mission was shared between the pilot and the copilot,” with the pilot having

“control of the switches which started and stopped the spray” (Buckingham, 1982, 37). As

such, instantaneous decision of aircraft pilots and drift due to the disturbing factors jointly

determined the spray dispersal, which inevitably deviated from the initial mission plans and

generated haphazard, natural-experimental variation in the herbicide distribution.8

Consequently, within geographically small areas around the spray start, turn, and end

points, the realized herbicide dispersal generates a discontinuous slope change, or a dis-

continuity in the first derivative, in the distribution of herbicide exposure, which remains

uncorrelated with potential confounding forces. Our RK strategy leverages this natural ex-

perimental kink in the treatment function to derive causal identification. Intuitively, we

compare hamlets that were barely covered by spray flights and received direct hits (i.e.,

“treated” hamlets with greater herbicide exposure due to direct hits) with hamlets that

were sufficiently close to but located barely outside of the spray flight paths and received

indirect hits (i.e., “control” hamlets with less herbicide exposure due to accidental hits).

Located within geographically small areas, these treated and control hamlets should have

7See footnote 2 for the aircraft navigation system in the Vietnam War period. Also note that a fuzzy
RK design allows incomplete manipulation while addressing measurement errors in the treatment and the
running variable (Card et al., 2015b, 2467–2469). Appendix B investigates potential nonlinearity in the
covariate distributions across the kink point, and Appendix C examines model dependence and how model
specification influences the main findings.

8To illustrate, approximately 29% of aircraft sorties were intercepted by ground fire in 1966 (Institute
of Medicine, 1995, 86), and the crop damage induced by drift on defoliation missions was greater than the
damage by crop destruction missions (National Academy of Sciences, 1974, S-5).
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similar (or more precisely, no kink in) geographic, historical, and socioeconomic attributes

prior to herbicide exposure, which we empirically validate in the following section.9

Here, we adopt a RK design rather than a regression discontinuity (RD) design given the

probable drifts of herbicide outside the areas with direct hits. We rely on a fuzzy, not sharp,

RK design given the unknown slope change parameter of the herbicide exposure (treatment)

function at the kink point as well as probable measurement errors in the treatment and the

running variable retrieved from the archival military records (Card et al., 2015b, 2464–2467).

3.1 Running Variable

The RK design requires a subset of sample hamlets located within sufficiently small geo-

graphic areas around the spray start, turn, and end points. The analysis also requires the

corresponding distance measure between hamlet locations and the spray start, turn, and end

points as the running variable as well as a dummy variable indicating actual spray hits.

The coding procedure involves several steps. First, we extend the recorded flight paths of

fixed-wing aircraft missions from the flight start, turn, and end points by an arbitrary length

of 0.05 degree ≈ 5.56 km. Second, we add buffers of 0.001 degree ≈ 111 meter width to both

sides (222 meters) of the extended flight paths, as graphically illustrated by Figure 2(a). The

baseline extension length of 5.56 km and the 222 meter buffer width mimic ordinary spray

flights in Operation Ranch Hand. A routine fixed-wing aircraft mission involved multiple

aircraft and dispersed herbicide at the airspeed of 130–150 knots (240–278 km/h) and an

altitude of 150 feet, with each aircraft covering a (laterally contiguous) swath of 80 meter

wide and 16 km long (Buckingham, 1982, 37, 132; Institute of Medicine, 1995, 25, 86–87;

Stellman et al., 2003b, 327). An extension length of 5.56 km approximately corresponds to

the “less-than-one-half-minute-away” distance from the observed kink point at the airspeed

of 240–278 km/h (= 4–4.63 km/m). A 222 meter buffer width similarly approximates the

combined swath of a routine spray mission involving three airplanes. This 222 meter or

9As discussed below, a valid RK design requires that covariate distributions evolve smoothly across the
kink point as well as the smoothness of the running variable distribution.
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(a) Observed and “Extended”
Spray Flight Paths

(b) Flight Paths and Hamlet Lo-
cations

(c) RK Sample Hamlets

�

Observed flight centerline “Extended” flight centerlineKink edge (cutoff)

Observed spray flight path “Extended” spray path (≈ 5.56 km)

RK bandwidth (e.g., 4 km on each side)

Buffer width
(≈ 222 m)

1

2

3

4

5

6

7

8

(d) Running Variable Coding Procedure

Figure 2: Spray Flight Paths, Hamlet Locations, and the RK Running Variable Coding Procedure

Notes : (a) Black polygons represent observed flight paths, and blue polygons indicate the extended flight
paths with a 0.05 degree (≈ 5.56 km) distance from the start/turn/end points with a 111 meter buffer on
each side (222 meters in total). Of the 14,733 hamlets (Panel (b)), hamlets covered by observed flight
polygons with a 222 meter buffer are categorized into the treatment groups (red dots), while the hamlets
only covered by a blue polygon are categorized into the control group (yellow dots; Panel (c)). (d) Vertical
thick segment indicates a kink edge. Dots and horizontal solid segments, respectively, represent hamlet
locations and observed and “extended” spray flight paths. Dashed (dotted) segments and shades represent
the buffer around the observed (extended) spray path.

three-aircraft approximation also reflects the historical fact that three C-123 airplanes were

assigned to Operation Ranch Hand until 1964, and the number of C-123s increased to 12 in

1965 and then to 36 in 1967 (Institute of Medicine, 1995, 86).

Third, we overlay the extended flight path polygons onto hamlet locations. The hamlets
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covered by the flight path polygons without the 5.56 km extension are coded as “treated,”

while those only covered by the extended parts are categorized into the control group (Fig-

ures 2(b) and (c)). For example, in Figure 2(d), among the hamlets located within the

5.56 km distance from the kink edge, polygon edges corresponding to the spray start, turn,

end points, hamlets 2–4 are categorized into the treatment group while hamlets 5–8 are

categorized into the control group. We then measure the geodesic distance between hamlet

locations and the nearest kink edges to assign running variable to individual hamlets.10

As in Figure 2(c), the full RK sample includes the hamlets that are geographically covered

by the observed or extended flight path polygons with the kink edge distance smaller than

5.56 km extension length. The geoprocessing leaves us a sample of 716 hamlets (4.86% of

14,733 hamlets in panel (b)) in 125 districts (38 provinces) in South Vietnam.

3.2 Model Specification

Our RK estimation builds upon the following two-stage model:

ln HERBhd = γEdgeDisthd + δEdgeDisthd × 1[EdgeDisthd ≥ 0] + ζ1[EdgeDisthd ≥ 0]

+X⊤
hdβ + ηDistrict

d + κAgent
a[h] + θEnd-edgek[h] + ιPre-1967k[h] + f1(Lonhd,Lathd) + ehd, (2)

Yhd = τ ̂ln HERBhd + λEdgeDisthd + ν1[EdgeDisthd ≥ 0] +X⊤
hdξ + πDistrict

d + ρAgent
a[h]

+ ϕEnd-edge
k[h] + ψPre-1967

k[h] + f2(Lonhd,Lathd) + uhd, if |EdgeDisthd| ≤ b (3)

where h, d, a, and k, respectively, index hamlets, districts, herbicide agents, and kink edges.

HERB denotes the herbicide exposure score, EdgeDist is the geodesic distance from the kink

edges in kilometers recentered at zero, and 1[EdgeDist ≥ 0] is a dummy variable which

takes one if EdgeDist ≥ 0 (treatment group) and zero otherwise (control group).11 X is

10The illustration here assumes that single spray flights cover single hamlets. When more than one spray
flight covers single hamlets, we modify the coding rule for the treated hamlets not to categorize the hamlets
located close to one kink edge (e.g., 100 meters) but far from another edges (e.g., 10 km > 5.56 km threshold)
into the treatment group. See Appendix A.3 for details.

11The specification includes 1[EdgeDisthd ≥ 0] and thereby allows discontinuity in the treatment function
at the kink point. When the kernel is symmetric (e.g., a uniform kernel), the asymptotic bias and variance
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a vector of hamlet-level covariates, and f1(Lon,Lat) and f2(Lon,Lat) are two-dimensional

cubic polynomials of hamlet geocoordinates to screen out spatial trends.12 ηDistrict and πDistrict

are (South Vietnam) district fixed effects, and κ and ρ are herbicide agent fixed effects.

θEnd-edge and ϕEnd-edge are end-edge fixed effects which take one if a hamlet’s running variable

is distance to a spray flight end edge and zero otherwise (i.e., a flight start or turn edge);

and ιPre-1967 and ψPre-1967 are fixed effects indicating a hamlet’s running variable measured

as the distance to the flight leg edges of pre-1967 missions, before the increase of the number

of aircraft from 12 to 36 assigned to Operation Ranch Hand mentioned above.13 The panel

setup replaces the second-stage outcome with annual population growth rate and adds a

year fixed effect to the right hand side.14 Following Card et al. (2012, 2015b, 2017), the RK

estimation relies on an uniform (rather than triangular) kernel, and the baseline setup uses a

bandwidth of b = 4 kilometers (522 hamlet observations). A 4 km bandwidth approximates

to the “one-minute away” distance at the typical airspeed of 4–4.63 km/m (= 240–278 km/h)

of fixed-wing aircraft missions. To ensure that the fixed bandwidth choice does not drive the

results, we replicate the RK estimates with a alternative bandwidth sizes.

The parameter of interest is τ in the second-stage (equation 3), which captures the average

effect of a marginal increase in lnHERB on the outcome at the cutoff. Formally, τ can be

interpreted as the treatment-on-the-treated (TT) effect (Florens et al., 2008) or the local

average response (LAR) of herbicide exposure (Altonji and Matzkin, 2005), instrumented by

EdgeDist× 1[EdgeDist ≥ 0] in the first stage (Card et al., 2015b).

Several aspects of the specification are worth explanations. Given the asymptotic results

of Pei et al. (2022), we adopt a local linear specification given the relatively small sample

of the RK estimand are not affected by the continuity imposition (Card et al., 2012, 2015b).
12Linear, quadratic, and fifth-order polynomials of longitude and latitude yield qualitatively similar results.
13The herbicide agent fixed effect has five categories: “Blue,” “Orange,” “Purple,” “White,” and “Others.”

Given the small numbers of observations, we put “Pink” and “Unknown” into “Others” category.
14With abuse of notations, the panel version of the second-stage model is:

Yhdt = τ ̂ln HERBhd + λEdgeDisthd + ν1[EdgeDisthd ≥ 0] +X⊤
hdξ + πDistrict

d + ρAgent
a[h]

+ ϕEnd-edge
k[h] + ψPre-1967

k[h] + ηt + f2(Lonhd,Lathd) + ehdt,

where ηt represents year fixed effect, with the corresponding first-stage model specified analogously.
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size. We also rely on district, agent, end-edge, and pre-1967 mission fixed effects instead of

the ideal flight or leg fixed effects due to limited sample size. Nonetheless, the specification

reflects the historical fact that South Vietnam Government both at the national and local

levels and the U.S. jointly controlled the herbicide missions (Buckingham, 1982, 36–38; In-

stitute of Medicine, 1995, 86).15 District fixed effects subsume the regional variation in the

authorization process and other district-level differences of counterinsurgency strategies; and

the remaining fixed effects absorb the types of chemical shocks (agent fixed effects), aircraft

directions (end-edge fixed effects), and overall intensity of herbicide missions and potential

military significance of nearby targets (pre-1967 fixed effects).

Throughout the analysis, we rely on the two-stage least-squares (2SLS) estimator. To

account for the increased error due to the two-stage estimation and potential error depen-

dence across space, we report Conley’s (1999) standard errors robust to spatial clustering

with a 30 km cutoff.16 Appendix A reports descriptive statistics of the variables.

3.3 Identification Assumption

A valid fuzzy RK design hinges on the smoothness assumption, which yields two testable

implications: First, the density of the running variable is sufficiently smooth, or continuously

differentiable at the cutoff; and second, predetermined covariates evolve smoothly around

the kink point (Card et al., 2012, 2015b, 2017).

Following literature (Bana, Bedard and Rossin-Slater, 2020; Card et al., 2015a,b; Landais,

2015), we validate the smoothness assumption with the running variable and covariate dis-

tributions in three ways. First, Figure B.1 in the Appendix examines the continuity of the

running variable distribution using the polynomial estimator of Cattaneo, Jansson and Ma

15The authorization process also involved the U.S. Ambassador, the U.S. Military Assistance Command,
and the Corps Tactical Zones (CTZs). Dell and Querubin (2018) use the CTZ (Corps I–II) boundary as one
of the sources for causal identification. As the CTZ boundaries follow the province boundaries, district fixed
effects subsume the difference in counterinsurgency strategy across CTZs and local governments.

16We use a 30 km cutoff to reflect the combat range of aircraft missions in which a C-123 airplane covered
a swath of 80 m wide and 16 km long (Buckingham, 1982, 132). A 30 km cutoff approximately reflects the
16-km range as a radius. The sample mean (median) of the aircraft spray legs is 18 km (16.48 km).
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(2020), and fails to detect statistically significant discontinuity at the kink point (t = −0.209

and p = 0.835). Second, we test for the kink in the running variable distribution using poly-

nomial regressions.17 As reported in Figure B.2 in the Appendix, the polynomial regressions

fail to detect a slope change in the running variable distribution around the kink point.

Finally, Figure B.3 in the Appendix presents a series of placebo kink estimates with the

covariates, including hamlet population in 1967–1969, as the left-hand-side variable using a

reduced-form version of our RK specification. Again, and consistent with the smoothness

assumption, most of the placebo regressions does not reveal a discernible slope change at

the kink point. Exceptions are the substantively small but statistically significant slope

change in wind speed and the distance to U.S. bases plausibly arising from random chance

or sampling error. Indeed, as reported in Appendix B.2, the same randomization inference

exercise introduced in the next section fails to negate that the covariate kink arises by chance.

Moreover, Appendix C.1 finds little evidence of model dependence, suggesting the minor role

of the marginally significant covariate kink in influencing our RK estimates.

4 Results

Figure 3 displays the distributions of herbicide exposure (first-stage association; panel (a))

and population size in 2020 (reduced-form association; panel (b)), given hamlet geocoor-

dinates and fixed effects.18 As the fuzzy RK estimand can be written as the ratio of the

reduced-form and first-stage associations, the co-evolving slope change provides a graphical

17Formally, and with abuse of notation, we first aggregate the hamlet observations using bins with different
sizes based on the running variable and then estimate the following regression model:

Nobs.
b = β1[EdgeDistb ≥ 0] +

P∑
p=1

[
γpEdgeDist

p

b + δpEdgeDist
p

b · 1[EdgeDistb ≥ 0]
]
+ eb,

where b indexes bins, Nobs. reflects the number of observations in each bin, EdgeDist is the midpoint of
EdgeDist of each bin, and P is the polynomial order. δ1 captures the slope change of the probability density
function of the running variable at the kink point. Not to violate the smoothness assumption, δ1 should
remain indistinguishable from zero.

18The RK estimand, τRK, can be written as the ratio of the reduced-form slope change (i.e., slope change
in the outcome function) relative to the first-stage slope change (i.e., slope change in the treatment function)
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(a) Treatment Kink: ln HERB (b) Outcome Kink: ln Population (2020)

Figure 3: Slope Change in the Treatment and Outcome Functions at the Kink Point

Notes : Dots represent the binned frequencies, and solid and dashed lines show linear regression fits
adjusting for longitude, latitude, and agent and district fixed effects. Solid line allows discontinuity (as
equation 2), while the dashed line imposes continuity at the kink point by dropping the treatment-side
dummy variable. The bin size is selected by the integrated mean squared error (MSE)-optimal mimicking
variance evenly-spaced method using spacing estimators (Calonico, Cattaneo and Titiunik, 2015).

but initial empirical evidence of herbicide legacies on contemporary population outcome. In

the following, we first report the cross-sectional RK estimates with population size as the

outcome. We then extend the analysis with alternative growth rate and panel specifications

across different bandwidth sizes, followed by a brief summary of robustness checks.

4.1 Population Size Estimates

Table 1 reports the RK estimation results with population size in 2001 (Panel A) and 2020

(Panel B) as the outcome, along with the first-stage estimates. Model (1) is the baseline

model without additional controls besides the two-dimensional polynomial of longitude and

latitude and fixed effects. Models (2) to (4) consecutively add the proximity to the key

targets, geographical characteristics, and historical attributes as covariates. To address po-

tential spillover effects, Model (5) adjusts for the spatially-lagged treatment with the 30

at the kink point as (Card et al., 2012, 2015b):

τRK =

limv0↓0 d(E[Y |V=v])

dv

∣∣∣
v=v0

− limv0↑0 d(E[Y |V=v])

dv

∣∣∣
v=v0

limv0↓0 d(E[D|V=v])

dv

∣∣∣
v=v0

− limv0↑0 d(E[D|V=v])

dv

∣∣∣
v=v0

,

where V denotes the running variable, v0 the kink point, and D the treatment.
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km neighbor cutoff in addition to the full set of covariates in model (4). Note that given

the limitation in data availability and the historical facts, some of the covariates can partly

be posttreatment (e.g., bombing point distance, 1965–1971). The models with covariate

adjustments, therefore, do not necessarily provide conservative estimates due to possible

posttreatment bias of unknown directions and should be interpreted with caution.

Table 1 confirms the graphical evidence of Figure 3 and underlines the herbicide legacies.

Across model specifications, the first-stage, treatment kink estimates are substantively and

statistically significant (Panel A). The second-stage coefficients on ln HERB are also con-

sistently signed negative and retain the statistical significance at the conventional 5% level

(Panels B and C). Note also that uninstrumented ordinary least squares (OLS) estimates

reported in Appendix Table A.2 substantively underestimate or even fail to reveal the neg-

ative association, suggesting that nonrandom herbicide assignment invites bias into naive

comparisons. Moreover, the coefficient stability suggests that the estimates are unlikely to

be driven by an arbitrary covariate adjustment choices, which is of a particular concern in

RK applications (Ando, 2017) and we further investigate in Appendix C.1. The negative

association also remains visible across the outcomes, population size in 2001 and 2020.

As an initial robustness check, Table 1 also reports three randomization inference re-

sults.19 First, an important concern for RK applications is the misspecification of the under-

lying nonlinearity such that one falsely specifies a quadratic relationship with no kink as a

discontinuous slope change (Ganong and Jäger, 2018). To guard against the misspecification

bias, Table 1 reports kink point (KP) randomization p-value obtained from the reduced-form

permutation test (Ganong and Jäger, 2018).20 For the exercise, we first generate 10,000

placebo kink points randomly drawn from a uniform distribution, U(−4 km, 4 km).We then

consecutively estimate the reduced-form version of the RK model with the subsample within

19Randomization exercise relies on the reduced-form and first-stage models as randomization inference
cannot be applied without additional assumptions to unobserved subgroups such as compilers.

20If our RK specification correctly captures a discontinuous slope change, we would be unlikely to see a
slope change with placebo kink points, and thus have a small KP randomization p-value. If, on the other
hand, we falsely specify a quadratic function with no kink as a discontinuous slope change, we would observe
discernible kink estimates with placebo kink points and a large KP randomization p-value.
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Table 1: Herbicide Exposure and Population Size in 2001 and 2020

Panel A: ln HERB

(1) (2) (3) (4) (5)

First stage
EdgeDist× 1[EdgeDist ≥ 0] −0.693∗∗∗ −0.660∗∗∗ −0.629∗∗∗ −0.633∗∗∗ −0.632∗∗∗

(0.095) (0.089) (0.087) (0.086) (0.084)
F -statistic (weak instrument) 53.132 54.585 51.893 54.03 56.504
Adjusted R2 0.620 0.652 0.663 0.666 0.677
Running variable (RV) randomization p-value 0.000 0.000 0.000 0.000 0.000
Spatial noise (SN) randomization p-value 0.000 0.000 0.000 0.000 0.000

Panel B: ln Population (2001)

(1) (2) (3) (4) (5)

Second stage
lnHERB −0.203∗∗∗ −0.177∗∗∗ −0.168∗∗∗ −0.165∗∗∗ −0.165∗∗∗

(0.069) (0.065) (0.063) (0.063) (0.064)
5% treatment increase effect size −0.99% −0.86% −0.82% −0.80% −0.81%
Average outcome 1.315 1.315 1.315 1.315 1.315

Reduced form
Kink point (KP) randomization p-value 0.019 0.021 0.004 0.003 0.000
RV randomization p-value 0.003 0.003 0.006 0.007 0.007
SN randomization p-value 0.004 0.004 0.005 0.006 0.006

Panel C: ln Population (2020)

(1) (2) (3) (4) (5)

Second stage
lnHERB −0.294∗∗∗ −0.264∗∗∗ −0.258∗∗∗ −0.254∗∗∗ −0.255∗∗∗

(0.076) (0.072) (0.072) (0.072) (0.072)
5% treatment increase effect size −1.43% −1.29% −1.26% −1.24% −1.24%
Average outcome 1.467 1.467 1.467 1.467 1.467

Reduced form
KP randomization p-value 0.013 0.007 0.008 0.009 0.004
RV randomization p-value 0.000 0.000 0.000 0.000 0.001
SN randomization p-value 0.000 0.000 0.000 0.000 0.000

Observations 522 522 522 522 522
Avg. N neighbors (Conley SE cluster size) 27.4 27.4 27.4 27.4 27.4
Key target covariates ✓ ✓ ✓ ✓
Geographic covariates ✓ ✓ ✓
Historical covariates ✓ ✓
ln spatially-lagged HERB ✓
Fixed effects and f(Lon,Lat) ✓ ✓ ✓ ✓ ✓
Notes : ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Conley (1999) standard errors adjusted for spatial clustering with
a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base distance, pop-
ulation (1967–1969), U.S. base distance, U.S. troop distance, rice cropland, road distance, slash and burn
cropland, Viet Cong control prevalence. Geographic covariates: Precipitation, wind speed, elevation, flow
accumulation, forest presence, rice suitability, river distance, ruggedness. Historical covariates: Bombing
point distance, border distance, number of neighbor hamlets, railway distance. ln spatially-lagged HERB
is the logged average HERB among the neighbor hamlets with a 30 km cutoff. Fixed effects: Agent fixed
effect, district fixed effect, end-edge fixed effect, pre-1967 mission fixed effect. Randomization inference:
KP randomization p-value is computed by the permutation test of Ganong and Jäger (2018) with 10,000
placebo kink points drawn from uniform distribution U(−4 km, 4 km). RV randomization p-value is ob-
tained by randomly assigning the running variable to the sample hamlets for 10,000 times. SN random-
ization p-value is obtained by 10,000 synthetic spatial noise simulations of Kelly (2021) with the outcome
replaced by randomly generated spatial noise.
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baseline 4 km bandwidth around each placebo kink point to obtain the empirical distribution

of placebo estimates. The two-sided p-value is computed by doubling the minimum of the

fraction of placebo estimates no smaller than or no greater than the actual reduced-form

coefficient. Second, another intuitive approach of randomization inference is to randomly

assign the running variable (RV) and the corresponding treatment-side indicator variable to

the sample hamlets while holding the kink pint fixed (e.g., Dell and Querubin, 2018, 30–33;

see also, Cattaneo, Frandsen and Titiunik, 2015). The RV randomization two-sided p-values

report the share of the absolute 10,000 placebo coefficients that are larger than the abso-

lute actual reduced-form kink coefficient. Finally, to address potential spatial curve-fitting

and residual spatial autocorrelation, we use the spatial noise (SN) randomization inference

procedure developed by Kelly (2021). The SN randomization inference procedure replaces

the outcome by synthetic noise with the same estimated spatial structure of the observed

outcome partialled out by covariates. If the estimation is not an artifact of spatial trends, the

observed variable should not explain spatial noise. The SN randomization p-value indicates

the fraction of 10,000 spatial noise simulations which yield absolute t values greater than the

absolute t value estimated with observed data.

For both treatment and outcomes, the randomization inference results are consistent

with asymptotic inference. The three series of randomization p-values remain smaller than

the conventional 5% threshold, suggesting that the actual estimates are unlikely to arise

from misspecification of the underlying nonlinearity (KP randomization), random chance

(RV randomization), or spatial autocorrelation and curve-fitting (SN randomization).

Turning to magnitude, the coefficient estimates can readily be interpreted as elastic-

ity given the log-log specification. The estimates suggest that, measured at the 100 me-

ter grid scale, a 5% increase in herbicide exposure is persistently followed by a 1.24%

(−0.254 × ln(1.05) = 0.0124, Model 4, with all covariates) to 1.43% (Model 1, without

covariates) decrease in population size in 2020 (Panel B), and a 0.80% to 0.99% decrease in

2001 (Models 1 and 4 in Panel C). Note that the 5% increase reference does not overstate
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the magnitude of the treatment effect, as such an increase in herbicide exposure is observed

within a geographically small area around the kink edges. Specifically, a 5% increase in

the treatment approximately corresponds to the difference in ln HERB between the average

of the control hamlets within a 1 km distance from the kink edge with the average of the

treated hamlets within the same distance from the kink edge ( 8.22
7.802

= 1.054).

Besides the baseline population growth during the 2001–2020 period (from 1.315 to 1.467

in the logarithm scale, Table 1), the growing, rather than fading away, coefficient size implies

that herbicide legacies shape not only population size but also population growth rate.

This leads to a testable implication that a similar negative association is also present in

local population growth rate, which contrasts the conventional wisdom of rapid recovery of

population from wartime destruction.

4.2 Population Growth Rate Estimates

To examine the testable implication of cumulatively increasing legacies of herbicide exposure,

we reestimate the RK models with the overall and annual population growth rates during the

2001–2020 period as the outcomes, using both cross-sectional and panel setups. This growth-

rate specification also surmounts the robustness concern that a small number of volatile and

less persistent population count observations in 2001 and 2020 drive the estimation results.

For the panel specification, we extend the baseline cross-sectional specification by replacing

the outcome by the annual growth rate and adding a year fixed effect as an additional

control.21 In the panel setup, we report robust standard errors clustered at the hamlet

level. Another robustness issue remaining in Table 1 is that the results are based on a fixed

bandwidth of 4 km, leaving potential concern for the bandwidth choice driving the results.

To examine the herbicide legacies on population growth rate and address these robustness

concerns, we report the RK estimates for overall and annual population growth rates across

different RK bandwidths ranging from 1.5 km to 5.6 km with an increment of 50 meters.

21The results remain qualitatively unchanged when further adjusting for the lagged outcome, Yhdt−1.
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(a) Overall Population Growth Rate, 2001–2020

(b) Annual Population Growth Rate, 2002–2020

Figure 4: Herbicide Exposure and Population Growth Rate

Notes : Symbols and thin (thick) vertical segments with horizontal ticks represent the RK estimates and
the corresponding 95% (90%) confidence intervals based on Conley (1999) standard errors with spatial
clustering (Panel (a)) and robust standard errors with hamlet-level clustering (Panel (b)). The model
specification in Panel (a) follows model (1) in Table 1. Panel (b) adds a year fixed effect to the baseline
specification. Grey shades represent “0.5-minute-away” (2–2.315 km) and “one-minute-away” distances
(4–4.63 km) from the kink point at the typical airspeed of Ranch Hand aircraft of 240–278 km/h, and
triangles indicate the corresponding point estimates. Annual growth estimate in Panel (b) covers the
2002–2020 period as the outcome is defined as lnPopulationt − ln Populationt−1 and our dataset covers the
2001–2020 period.
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Figure 4 presents the RK estimates for overall (Panel (a)) and annual (Panel (b)) pop-

ulation growth rates across bandwidth sizes, painting a picture that is consistent with the

population size results. Regardless of the bandwidth settings and outcomes, the growth rate

estimates reveal a negative association consistent with the population size estimates.22 The

effect size of the persistent association is also discernible given the average outcome of 0.151

(or e0.151 = 1.163, 16.3% overall population growth) and the geographically small level of

outcome measurement of 100 meter grid. The cross-sectional RK estimate of τ = −0.091

with the baseline bandwidth of 4 km (a “one-minute-away” distance) suggests that a 5%

increase in herbicide exposure translates into a 0.44% (−0.091 × ln(1.05) = −0.0044) de-

crease in the overall (logged) population growth rate in 2001–2020 (Figure 4(a)). Given

lnPopulation2020 − ln Population2001 ≈
Population2020
Population2001

− 1, a 0.44% decrease can approximately

be interpreted as the effect size in the percentage point scale. The negative association is

also visible in the panel specification with the annual population growth rate as the out-

come (Figure 4(b)), revealing the herbicide legacies remaining in the dynamics as well as the

snapshots of population outcomes in Vietnam in the present day.

4.3 Robustness Check and Sensitivity Analysis

Robustness and sensitivity concerns remaining in the main estimates include (1) the robust-

ness to the parameter choice to construct the RK sample and the exposure score, HERB,

(2) confounding kink in observed covariates and model dependence, and (3) unobserved con-

founding kink. In addition to the placebo kink (covariate kink) estimates reported above, Ap-

pendix C addresses these concerns by leveraging (1) alternative combinations of flight buffer

width and half-decay distance parameters, (2) all possible 2N covariates = 220 = 1, 048, 576

model specifications per outcome, (3) a jackknife approach and the known historical differ-

22Figure 4 follows the specification of model (1) in Table 1 (without covariate adjustments). Note that,
as reported in Appendix C.1, the growth rate specification is remarkably robust to different model specifi-
cations (different combinations of adjusted covariates) and exhibits little model dependence. The empirical
distribution of the RK estimates of all possible 2N covariates = 220 = 1, 048, 576 model specifications is almost
normally distributed with the mean and median estimates of 0.091 (Appendix Figure C.1), which is nearly
identical to the point estimate reported in the text and Figure 4(a) (τ̂ = 0.091).

21



ences in counterinsurgency strategies across four U.S. Corps Tactical Zones in South Vietnam

(see, e.g., Dell and Querubin, 2018), and (4) a sensitivity analysis approach to quantify how

severe unobserved confounding forces would need to be to eliminate the main estimates

(Cinelli and Hazlett, 2020). Reassuringly, none of the robustness checks yield results that

would invalidate or overturn the main findings.

5 Conclusion

This article combined the historical records of herbicide missions with a fuzzy RK design,

and revealed the negative legacies of herbicidal warfare on contemporary population size

and growth rate in Vietnam. The empirical analysis suggests that the temporary shock of

herbicidal warfare left lasting, rather than temporary, effects on contemporary population

outcomes. While the reported results tell us little about the underlying mechanisms, there

are at least three distinct, although not mutually exclusive, explanations for the revealed

persistent association, which also opens up pathways for future research. First, the negative

association might reflect decreased birthrates and life expectancy. The reported negative

association between herbicide exposure and health outcomes (e.g., Le, Pham and Polachek,

2022) makes the heavily sprayed areas persistently suffer lower birthrates and decreased

life expectancy. Second, and relatedly, the lower population size and growth rates can

arise from deteriorated agricultural productivity to sustain local population (e.g., Appau

et al., 2021). Finally, domestic migration preferences and patterns can also shape population

dynamics. Increased out-migration from the herbicide affected areas coupled with decreased

in-migration into the damaged areas can also account for the lasting negative associations.
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Lichter, Andreas, Max Löffler, and Sebastian Siegloch. 2020. “The Long-Term Costs

of Government Surveillance: Insights from Stasi Spying in East Germany.” Journal of the

European Economic Association, 19(2): 741–789.

Lin, Erin. 2022. “How War Changes Land: Soil Fertility, Unexploded Bombs, and the

Underdevelopment of Cambodia.” American Journal of Political Science, 66(1): 222–237.

McCormick, John T. 2021. “The Hamlet Evaluation System Reevaluated.” Available at:

https://github.com/ jtmccorm/HES Reevaluated , accessed July 7, 2021.

Miguel, Edward, and Gérard Roland. 2011. “The long-run impact of bombing Viet-

nam.” Journal of Development Economics, 96(1): 1–15.

Military Assistance Command, Vietnam (MACV). 1969. “Military Operations: Her-

bicide Operations (U).” APO San Francisco 96222, Accession Number: AD0779793. Avail-

able at: https://apps.dtic.mil/ sti/ citations/AD0779793 , accessed July 10, 2023.

National Academy of Sciences. 1974. The Effects of Herbicides in South Vietnam: Part

A Summary and Conclusions. Washington, DC: National Academy of Sciences.

Nunn, Nathan, and Leonard Wantchekon. 2011. “The slave trade and the origins of

Mistrust in Africa.” American Economic Review, 101(7): 3221–3252.

Palmer, Michael, Cuong Viet Nguyen, Sophie Mitra, Daniel Mont, and

Nora Ellen Groce. 2019. “Long-lasting consequences of war on disability.” Journal of

Peace Research, 56(6): 860–875.

25

https://github.com/jtmccorm/HES_Reevaluated
https://apps.dtic.mil/sti/citations/AD0779793


Pei, Zhuan, David S. Lee, David Card, and Andrea Weber. 2022. “Local Polynomial

Order in Regression Discontinuity Designs.” Journal of Business and Economic Statistics,

40(3): 1259–1267.

Riaño, Juan Felipe, and Felipe Valencia Caicedo. 2021. “Collateral Damage: The

Legacy of the Secret War in Laos.” CEPR Discussion Paper, DP15349.

Rowley, Ralph A. (Office of Air Force History). 1975. “The Air Force in Southeast

Asia: FAC Operations, 1965–1970.” Office of Air Force History, May 1975, available at:

https://media.defense.gov/2011/Mar/24/2001330117/ -1/ -1/0/AFD-110324-008.pdf .

Singhal, Saurabh. 2019. “Early life shocks and mental health: The long-term effect of war

in Vietnam.” Journal of Development Economics, 141(March): 102244.

Stellman, Jeanne Mager, Steven D. Stellman, Richard Christian, Tracy Weber,

and Carrie Tomasallo. 2003a. “The extent and patterns of usage of agent orange and

other herbicides in Vietnam.” Nature, 422(6933): 681–687.

Stellman, Jeanne Mager, Steven D. Stellman, Tracy Weber, Carrie Tomasallo,

Andrew B. Stellman, and Richard Christian. 2003b. “A geographic information

system for characterizing exposure to Agent Orange and other herbicides in Vietnam.”

Environmental Health Perspectives, 111(3): 321–328.

Stellman, Steven D., and Jeanne M. Stellman. 1986. “Estimation of exposure to

agent orange and other defoliants among american troops in vietnam: A methodological

approach.” American Journal of Industrial Medicine, 9(4): 305–321.

U.S. Geological Survey (USGS). 1996. “Global 30-Arc-Second Elevation Data,

GTOPO30.”

Yamada, Takahiro, and Hiroyuki Yamada. 2021. “The long-term causal effect of U.S.

bombing missions on economic development: Evidence from the Ho Chi Minh Trail and

Xieng Khouang Province in Lao P.D.R.” Journal of Development Economics, 150(Octo-

ber): 102611.

Yamashita, Nobuaki, and Trong Anh Trinh. 2022. “Long-Term Effects of Vietnam

War: Agent Orange and the Health of Vietnamese People After 30 Years.” Asian Economic

Journal, 36(2): 180–202.

Zabel, Florian, Birgitta Putzenlechner, and Wolfram Mauser. 2014. “Global agri-

cultural land resources: A high resolution suitability evaluation and its perspectives until

2100 under climate change conditions.” PLoS ONE, 9(9): 1–12.

26

https://media.defense.gov/2011/Mar/24/2001330117/-1/-1/0/AFD-110324-008.pdf


Online Appendix for

“Not Gone With the Wind: Long-Run
Impacts of Herbicidal Warfare in Vietnam”

Gaku Ito∗ Duc Tran† Yuichiro Yoshida‡

January 10, 2024

Contents

A Data Details A1
A.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
A.2 Stellman-National Academy of Sciences HERBS File . . . . . . . . . . . . . A1
A.3 Running Variable Coding Procedure . . . . . . . . . . . . . . . . . . . . . . A2
A.4 Historical Maps and Archival Sources . . . . . . . . . . . . . . . . . . . . . . A4
A.5 Naive OLS Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A6

B Identification Assumption A7
B.1 Running Variable Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . A7
B.2 Covariate Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A9

C Robustness Check A13
C.1 Confounding Nonlinearity and Model Dependence . . . . . . . . . . . . . . . A13
C.2 Flight Buffer Width and Half-Decay Distance . . . . . . . . . . . . . . . . . A15
C.3 Counterinsurgency Strategy and Jackknife Estimates . . . . . . . . . . . . . A15
C.4 Unobserved Confounding Forces and Sensitivity Analysis . . . . . . . . . . . A17

References A19

∗Associate Professor, Graduate School of Economics, Osaka Metropolitan University. 3–3–138 Sugimoto,
Sumiyoshi, Osaka 558–8585, Japan. Email: gaku@omu.ac.jp. URL: https://gaku-ito.github.io.

†Assistant Professor, Hitotsubashi Institute for Advanced Study, Hitotsubashi University. 2–1 Naka,
Kunitachi, Tokyo 186–8601, Japan. Email: duc.tran@r.hit-u.ac.jp. URL: https://ductran-data.github.io.

‡Professor, Graduate School of Humanities and Social Sciences, Hiroshima University. 1–5–1
Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8529, Japan. Email: yuichiro@hiroshima-u.ac.jp.



A Data Details

A.1 Descriptive Statistics

Table A.1 reports the summary statistics of the variables used in the empirical analysis.

Nonbinary variables excepting the running variable, Viet Cong control prevalence, and pop-

ulation growth rates are log-transformed.

A.2 Stellman-National Academy of Sciences HERBS File

The key source of our empirical analysis is the Stellman-National Academy of Sciences (NAS)

version of the Herbicide Report System (HERBS) file (S-NAS HERBS, Stellman et al.,

2003a,b). We first web-scraped the records in the database from the Agent OrangeWarehouse

website1 We then converted the geocoordinate information originally recorded in the military

grid reference system (MGRS) format into the longitude-latitude format, and combined the

converted geocoordinates with other mission- and flight-level information.

In addition to the geocoordinates of spray start, turn, end points, the database contains

information about the mission dates, spray methods, and agents and gallons sprayed in

individual missions.2 The spray method is categorized into “Fixed-Wing Aircraft,” “Ground

Spraying,” “Helicopter,” and “Unspecified” categories. As Stellman et al. (2003b, 323) note,

a majority of herbicide missions was carried out by fixed-wing aircraft (C-123 airplanes),

with 5,961 (65.2%) out of 9,141 missions recorded as aircraft missions. The remaining 3,180

missions include 2,108 (23.1%) missions by helicopters, 446 (4.9%) ground applications, and

626 (6.8%) missions with the method information remaining unspecified. As explained in

the main text, our empirical analysis uses the fixed-wing aircraft missions by the US Air

Force, which dispersed approximately 95% of all herbicides (Stellman et al., 2003a, 681–682;

see also, Figure 1 in the main text).

1Available at: http://www.workerveteranhealth.org/milherbs/new/, accessed August 29, 2021.
2For the aircraft navigation system in the 1960s and the development of the tactical air navigation system

(TACAN) distance measuring equipment (DME) in the region, see, for example, Rowley (1975).
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Table A.1: Descriptive Statistics

Observations Mean SD Median IQR

Panel A: Dependent Variables

Population (2001) 716 1.333 0.995 1.193 1.327
Population (2020) 716 1.484 1.109 1.287 1.324
Overall Population Growth Rate 716 0.152 0.319 0.095 0.338
(2001–2020)
Annual Population Growth Rate 13, 604 0.008 0.104 0.003 0.074
(2001–2020)

Panel B: Treatment and Assignment Variables

HERB (DHalf =500m) 716 7.093 1.946 7.488 2.411
Edge Distance 716 −1.140 2.924 −1.418 4.660
1[EdgeDistij ≥ 0] 716 0.330 0.470 0.000 1.000

Panel C: Covariates

Key Target Covariates
North Vietnam Army Base Distance 716 2.758 0.730 2.844 1.059
U.S. Base Distance 716 2.996 0.820 3.149 1.065
U.S. Troop Distance 716 4.892 1.276 5.220 1.778
Population (1967–1969) 716 3.143 3.314 0.693 6.524
Rice Cropland 716 0.300 0.459 0.000 1.000
Road Distance 716 1.463 1.529 1.671 2.248
Slash and Burn Cropland 716 0.251 0.434 0.000 1.000
Viet Cong Control Prevalence 716 0.172 0.325 0.000 0.129

Geographic Covariates
Elevation 716 4.319 1.454 3.850 2.918
Flow Accumulation 716 1.747 2.280 0.693 2.996
Forest Presence 716 0.522 0.500 1.000 1.000
Precipitation 716 7.464 0.200 7.446 0.315
Rice Suitability 716 1.619 1.322 1.099 3.258
River Distance 716 −0.199 1.336 −0.068 1.719
Ruggedness 716 1.072 0.786 0.693 0.916
Wind Speed 716 0.778 0.177 0.771 0.314

Historical Covariates
Bombing Point Distance 716 −0.190 0.822 −0.168 1.215
Border Distance 716 4.330 0.828 4.554 0.798
Number of Neighbor Hamlets 716 2.997 0.879 3.045 1.153
Railway Distance 716 2.992 1.632 3.364 2.069

Geocoordinates
Longitude 716 107.911 1.004 108.222 1.686
Latitude 716 13.177 2.081 13.610 3.510

Notes : SD = standard deviation, IQR = interquartile range.

A.3 Running Variable Coding Procedure

The main text explains the coding procedure of the running variable with examples in which

single flight path polygons cover individual hamlets. When multiple flight polygons cover

single hamlets, we adopt group-specific rules to measure the kink edge distance as illustrated
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(b) Overlapped Spray Paths: Parallel Overlap

Figure A.1: Running Variable Coding with Overlapped Spray Paths

Notes : (a), (b) Dashed and dotted segments represent distinct spray path polygons. Hamlets 2 and 7 are
geographically covered by multiple spray path polygons.

by Figure A.1. For the treatment group hamlets, we first take the minimum distance to the

kink edges and then assign the maximum, instead of the minimum, of the distance measures

as its running variable. For example, we assign the distance to kink edge (1) instead of the

distance to kink edge (2) as the running variable for hamlet 2 (in the treatment group).

For the control group hamlets, we first measure the distances to the kink edges of all flight

polygons covering the hamlets, and then assign the minimum distance as its running variable.

For example, the running variable for hamlet 7 (in the control group) in Figure A.1(a) is

measured as the distance to kink edge (3) instead of the distance to kink edge (1).

We adopt these group-specific coding rules because the coding procedure for the control

hamlets might underestimate the kink-edge distance for the treated hamlets. As illustrated

by hamlet 2 in Figure A.1(a), when covered by multiple flight path polygons, a treated

hamlet may be located in the middle of one flight polygon (e.g., 4 km from kink edge 1)

while located closed to the kink edges of another flight path polygon (e.g., 250 meters from

kink edge 2). In this case, a simple minimum distance coding assigns 250 meters to hamlet

2 as the running variable. However, this coding significantly underestimates the hamlet’s

distance to kink edge because the hamlet is located in the middle of another flight path and
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is strongly exposed to the treatment due to the mission flight with kink edge (1) regardless of

its distance to kink edge (2). Our coding rule prevents this underestimation of the running

variable and assigns 4 km instead of 250 meters to the treated hamlet.

Instead of the maximum-of-minimum distance rule for the treated hamlets, we rely on the

minimum-of-minimum distance rule for the control group hamlets (e.g., hamlet 7). Because

the control group hamlets are located outside of the flight polygons, their proximity to the

kink edges can best be measured by the minimum distance. In the case of hamlet 7, we assign

the distance to kink edge 3 as the running variable. Figure A.1(b) illustrates another example

with multiple spray paths with parallel overlaps. The kink edge distances for hamlets 2 and 7

are measured in the same manner as illustrated with the case of Figure A.1(a) (i.e., distance

to kink edge 1 for hamlet 2, and distance to kink edge 3 for hamlet 7).

A.4 Historical Maps and Archival Sources

As explained in the main text, some of our covariates relies on historical maps and archival

sources. As one of the key sources, we originally georeferenced and image-processed the

historical maps of Indochina Atlas published by the Central Intelligence Agency (CIA) in

1970 and later digitized by the University of Texas Libraries.3 As shown in Figures A.2(a) to

A.2(c), the Atlas provides a series of maps as of the period including the transportation lines

(i.e., roads, trails, and railways), surface configurations, and crop fields. Figures A.2(d) to (f)

show the image-processed results for transportation lines, forest coverage, and croplands.4

We rely on several other sources to measure the historical landscape of military bases

and troops. Suspected areas of North Vietnam Army (NVA) base are retrieved from the

Enemy Base Area File (BASFA), July 1, 1967–July 1, 1971 hosted by the National Archives

3The digitized (scanned) maps are available at https://maps.lib.utexas.edu/maps/indochina atlas/ and
https://www.history.navy.mil/research/library/exhibits/maps/indochina-atlas-1970.html.

4For image-processing, we primarily rely on the mean-shift segmentation algorithm implemented in Orfeo
Toolbox (Grizonnet et al., 2017) and the skeletonization algorithm of Tveite (2015). We rely on the same
image-processing procedures to generate the polygons of demarcation line and demilitarized zone (DMZ)
from CIA’s “Vietnam demarcation line and demilitarized zone. 12-66” map as of 1966 (https://www.loc.
gov/resource/g8021f.ct002840/, accessed September 22, 2021).
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(a) Transportation Map (b) Vegetation Map (c) Agriculture Map

(d) Road and Railway Network (e) Forest Coverage (f) Rice Croplands and Slash and
Burn Cultivation Areas

Figure A.2: Indochina Atlas Maps and the Image-Processed Vector Objects

Notes : Panels (a), (b), and (c) depict the original (non-georeferenced) scanned maps of Indochina Atlas,
digitized by the University of Texas Libraries. Panels (d), (e), and (f) show the generated vector objects
(lines and polygons). Red and black segments in Panel (d), respectively, indicates roads (including trails)
and railways. Green region in Panel A.2(e) represents forest presence. In Panel (f), green regions represent
rice croplands, and yellow regions indicate the areas with slash and burn cultivation.
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(a) USAF and Navy Bases (b) U.S. Army and Marine
Troops

(c) NVA Base Areas

Figure A.3: Locations of U.S. Bases, Troops, and NVA Base Areas

Notes : Dots in each panel indicate, respectively, (a) U.S. Air Force and Navy bases, (b) U.S. Army and
Marine troop locations, and (c) suspected areas of North Vietnam Army (NVA) base areas in and near
South Vietnam. Dots in (c) represent the geocoordinates of the “approximate center” of the suspected
NVA base areas (National Archives and Records Administration. 2007. “Reference Copy of Technical
Documentation for Accessioned Electronic Records: Enemy Base Area File (BASFA), 7/1967–7/1971,
Translation File, RG 330, Records of the Office of the Secretary of Defense.” pp.26–27. Available at:
https://catalog.archives.gov/id/2573252, accessed June 16, 2023).

and Records Administration (NARA).5 The locations of U.S. Air Force and Navy bases and

U.S. Army and Marine troops are retrieved from the S-NAS HERBS database. Figure A.3

depicts the spatial distributions of U.S. bases, U.S. troop locations, and the suspected areas

of NVA bases in and near South Vietnam.

A.5 Naive OLS Estimates

Table A.2 reports the uninstrumented, naive ordinary least square (OLS) version of the main

fuzzy regression kink (RK) specification with population size in 2001 and 2020 as outcomes.

As briefly reported in the main text, compared with the main RK estimates, the naive OLS

estimates underestimate or even fail to detect the negative association between herbicide

5National Archival Identifier 2573252; Accession Number of NN3-330-76-037. Available at: https://
catalog.archives.gov/id/2573252, accessed June 16, 2023.
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Table A.2: Herbicide Exposure and Contemporary Population Size, Naive OLS Estimates

Panel A: ln Population (2001)

(1) (2) (3) (4) (5)

lnHERB −0.059∗ −0.050 −0.040 −0.046 −0.056∗

(0.034) (0.030) (0.028) (0.028) (0.029)
Adjusted R2 0.716 0.793 0.815 0.819 0.822

Panel B: ln Population (2020)

(1) (2) (3) (4) (5)

lnHERB −0.075∗ −0.070∗∗ −0.058∗ −0.068∗∗ −0.082∗∗

(0.038) (0.035) (0.032) (0.033) (0.034)
Adjusted R2 0.703 0.775 0.796 0.800 0.804

Observations 522 522 522 522 522
Avg. N neighbors (Conley SE cluster) 27.4 27.4 27.4 27.4 27.4
Key Target Covariates ✓ ✓ ✓ ✓
Geographic Covariates ✓ ✓ ✓
Historical Covariates ✓ ✓
ln Spatially-Lagged HERB ✓
Fixed effects and f(Lon,Lat) ✓ ✓ ✓ ✓ ✓
Notes : ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Conley (1999) standard errors adjusted for spatial clustering
with a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base distance,
population (1967–1969), U.S. base distance, U.S. troop distance, rice cropland, road distance, slash and
burn cropland, Viet Cong control prevalence. Geographic covariates: Precipitation, wind speed, eleva-
tion, flow accumulation, forest presence, rice suitability, river distance, ruggedness. Historical covariates:
Bombing point distance, border distance, number of neighbor hamlets, railway distance. ln spatially-
lagged HERB is the logged average HERB among the neighbor hamlets with a 30 km cutoff. Fixed effects:
Agent fixed effect, district fixed effect, end-edge fixed effect, pre-1967 mission fixed effect.

exposure and contemporary population size revealed in Table 1.

The RK-OLS discrepancy may reflect (1) bias in the OLS estimates induced by confound-

ing bias and measurement error, (2) bias in the RK estimates, (3) bias in both estimates,

and (4) the difference in the estimands (average treatment effect, ATE, and the LAR or

TT effect). Given the nonrandom nature of herbicide assignment, we mainly attribute the

difference between the OLS and RK estimates to the bias remaining in the OLS estimates.

B Identification Assumption

B.1 Running Variable Distribution

A valid fuzzy RK design hinges on the smoothness assumption, which yields several testable

implications (Card et al., 2015b). The first testable implication of the smoothness assump-
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Figure B.1: Continuity of the Running Variable Distribution

Notes : Gray bars represent the histogram estimates of the running variable, EdgeDist. Solid and dashed
lines indicate the local polynomial density estimates and the corresponding 95% confidence intervals
(Discontinuity test: t = −0.209 and p = 0.835). The discontinuity estimate is computed using the
procedure of Cattaneo, Jansson and Ma (2020), with the running variable recentered at zero.

tion requires a running variable continuously differentiable at the kink point. To empirically

validate the implication, Figure B.1 examines the continuity of the running variable using

the estimator of Cattaneo, Jansson and Ma (2020). Consistent with the identification as-

sumption, the density test fails to detect discernible or statistically significant discontinuity

in the running variable at the kink point (t = −0.209 and p = 0.835).

The smoothness assumption requires not only the absence of discontinuity but also the

absence of a slope change in the running variable distribution at the kink point. To fur-

ther validate the assumption, we follow the approaches of Bana, Bedard and Rossin-Slater

(2020), Card et al. (2015a), Card et al. (2015b), and Landais (2015) and test for the kink

in the running variable distribution via polynomial regressions. Formally, and with abuse of

notation, we first aggregate the hamlet observations using bins with different sizes based on

the running variable and then estimate the following regression model:

Nobs.
b = β1[EdgeDistb ≥ 0] +

P∑
p=1

[
γpEdgeDist

p
b + δpEdgeDist

p
b · 1[EdgeDistb ≥ 0]

]
+ eb, (B.1)

where b indexes bins, Nobs. reflects the number of observations in each bin, EdgeDist is the
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midpoint of EdgeDist of each bin, and P is the polynomial order. The coefficient on the

interaction between the linear of the running variable and the treatment group indicator, δ1,

captures the change in the slope of the probability density function of the running variable at

the kink point. We repeatedly estimate the polynomial regression using different bin widths

ranging from 50 meters to 500 meters with an increment of 50 meters and the running

variable polynomial orders ranging from 2 to 6.

Figure B.2 summarizes the polynomial regression results by plotting the coefficient es-

timates on the interaction term between the treatment group indicator and the (linear)

running variable (δ1). Triangles in each panel and Panel (f) indicate the estimates obtained

from the smallest Akaike Information Criterion (AIC) value for each bin size. Regardless of

the bin size and polynomial order, the coefficient estimates remain statistically insignificant

at the 5% level. The polynomial regressions reveal no discernible slope change in the running

variable distribution at the kink point and fail to invalidate the current RK strategy.

B.2 Covariate Distribution

Another key testable implication of the smoothness assumption involves covariate distribu-

tions around the kink point. The validity of the current RK design would be undermined if

predetermined covariates, along the treatment, exhibit discernible kink around the cutoff.6

We examine the validity of the assumption by subsequently estimating the first-stage spec-

ification of equation (2) with the left-hand-side variable, lnHERB, replaced by one of the

covariates. We estimate the placebo kink estimate with and without adjustments for the re-

maining covariates, with the baseline bandwidth b = 4 km as in Table 1 in the main text. The

smoothness assumption requires that the coefficient on EdgeDist×1[EdgeDist ≥ 0] remains

indistinguishable from zero once we replace the left-hand-side variable with covariates.

Figure B.3 summarizes the (standardized) kink estimates with (hollow symbols) and

6Seen from an instrumental variable (IV) perspective, a key assumption here is that the instrument,
EdgeDist× 1[EdgeDist ≥ 0], affects the outcome (slope change) only through the treatment (slope change).
A kink in a covariate can also be viewed as a sign of exclusion restriction violation such that the instrument
affects the outcome through the covariate, not exclusively through the treatment.
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(a) Polynomial Order = 2 (b) Polynomial Order = 3 (c) Polynomial Order = 4

(d) Polynomial Order = 5 (e) Polynomial Order = 6 (f) Smallest AIC

Figure B.2: Kink Estimates in the Running Variable Distribution

Notes : Dots represent the kink estimates obtained from polynomial regressions (δ1 in equation B.1), with
the running variable polynomial order specified as in the figure labels and bin sizes on the vertical axis.
Triangles represent the estimates obtained from the model with the smallest Akaike Information Criterion
(AIC) for each bin size. Horizontal segments represent the 95% confidence intervals.

without adjustments for the remaining covariates (solid symbols), along with the treatment

kink estimates (top row triangles). In a sharp contrast with the treatment slope change, and

consistent with the identification assumption, most of the placebo regressions fails to detect
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Figure B.3: (Standardized) Covariate and Treatment Kink Estimates

Notes : Symbols represent the reduced-form kink estimates with the variable on the vertical axis as the
outcome variables, with (solid) and without adjustment for the remaining covariates (hollow). Horizontal
segments represent 95% confidence intervals based on Conley (1999) standard errors with a 30 km cutoff
and a Bartlett kernel (not corrected for multiple testing). All nonbinary variables are standardized.

a discernible slope change around the kink point. Exceptions include the substantively small

but statistically significant estimates for wind speed (coef. = 0.043, t = 2.299) and U.S.

base distance (coef. = 0.065, t = 2.166), along with the marginally significant estimates in

population in 1967–1969 (coef. = 0.089, t = 1.764) and border distance (coef. = 0.025, t =

1.681), when adjusted for covariates (solid symbols).7

Nonetheless, the running variable (RV) randomization exercise disagrees with asymptotic

inference and fails to negate that the covariate kink are generated by chance. As in Table 1,

we randomly assign the running variable to the sample hamlets and estimate the placebo kink

coefficient for 10,000 times. The randomization two-sided p-value indicates the share of the

absolute placebo coefficients that are larger than the absolute actual coefficient. Figure B.4

7Given one treatment and 20 covariates (21 variables) in Figure B.3, the probability of a Type I error in
which one falsely rejects at least one null hypothesis with α = 0.05 is 65.9% (1− 0.9521 = 0.659).
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Figure B.4: Running Variable Randomization Inference

Notes : Each panel shows the histogram of 10,000 placebo kink estimates for the outcome in the top label.
We randomly assign (permute) the running variable to the sample hamlets, and then estimate the
reduced-form (or first-stage) version of the RK specification with (bottom row panels) and without
covariate adjustments (top row panels) for 10,000 times. Solid (dashed) segments indicate the actual kink
estimates (−1× actual kink estimate) with the observed running variable. The randomization (two-sided)
p-values in the top labels indicate the share of the absolute placebo coefficients that are larger than the
absolute actual coefficient (vertical lines).

shows the histograms of the placebo (standardized) kink estimates, with the corresponding

actual kink estimates (vertical lines). The corresponding randomization p-values are 0.073

(wind speed), 0.068 (U.S. base distance), 0.101 (population, 1967–1969), and 0.147 (border

distance) with covariate adjustments, and 0.095 (wind speed), 0.189 (U.S. base distance),

0.125 (population, 1967–1969), and 0.529 (border distance) without covariate adjustments.

A natural and substantively important question is on how the covariate kink affects the

main RK estimates. A focused exercise in Appendix C, however, suggests that the RK

estimates remain stable across all possible model specifications (covariate combinations) and

outcomes, and reveals little sign of model dependence. Along with the little evidence of

model dependence, the covariate kink test also fails to invalidate the current RK design.

A12



C Robustness Check

C.1 Confounding Nonlinearity and Model Dependence

One may wonder how the kink wind speed and U.S. base distance and model specification

influence the main findings. Related to this point, Ando (2017) underlines the potential sus-

ceptibility of RK estimates to the failure to adjust for confounding nonlinearity. A simple,

crude way to address this concern for confounding nonlinearity is to estimate all possible

model specifications. The key idea is that if the current RK design suffers confounding kink

in observed outcomes, the RK estimate should be sensitive to the choice of covariate adjust-

ments. Specifically, we repeatedly estimate the RK model with each covariate combination

and three cross-sectional outcomes.8 Given that our RK specification includes 20 covariates

along with the fixed effects and the longitude-latitude polynomial, the number of possible

model specifications amounts to 220 = 1, 048, 576 for each outcome (omitting the spatially-

lagged treatment and interaction terms). We estimate each model specification using the

sample hamlet with the baseline bandwidth of b = 4 km as in Table 1 in the main text.

Figure C.1 summarizes the result of the “try-all” exercise. To explicitly examine how the

adjustment for U.S. base distance and wind speed affect the estimates, Figure C.1 presents

density histograms for RK estimates of, from the left, (1) all possible 1, 048, 576 models,

(2) 218 = 262, 144 models adjusting for U.S. base distance but not for wind speed, (3)

262, 144 models adjusting for wind speed but not for U.S. base distance, (4) 262, 144 models

adjusting for both U.S. base distance and wind speed, and (5) 262, 144 models not adjusting

for U.S. base distance or wind speed for each outcome. Thin solid and dashed vertical

segments indicate the corresponding mean and median estimates, and bold solid and dotted

segments indicate the RK estimates corresponding to Model 1 (without covariates) and

Model 4 (adjusting for all covariates) in Table 1 in the main text.

The key results are threefold. First, across the outcomes, the empirical distribution of

8This exercise relies on the cross-sectional setup given the qualitative similarity of annual (panel) and
overall (cross-sectional) population growth rate estimates in Figure 4 in the main text.
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Figure C.1: Empirical Distribution of Second-Stage RK Estimates, All Possible Specifications

Notes : Density histograms in each row plot the empirical distributions of (subsets of) 220 = 1, 048, 576 RK
model specifications for three cross-section outcomes, with different covariate adjustment conditions
denoted in the top text labels. Thin solid and dashed vertical segments indicate the mean and median
estimates in each panel. Bold solid and dotted vertical segments represent the RK estimates of model 1
(without covariates, solid) and model 4 (with all covariates, dotted) in Table 1 in the main text.

RK estimates is close to a normal distribution (with slight skews in population size in 2001

and 2020), suggesting that covariate combination does not play a major role in altering the

RK estimates beyond random error. Second, the adjustment for U.S. base distance and

wind speed is unlikely to alter the RK estimate. As graphically illustrated by the similarity

between the panels in each row, the RK estimate distribution remains almost unchanged
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regardless of covariate adjustments, with almost identical sample mean (solid vertical seg-

ment) and median estimates (dashed segment). Third, the baseline RK estimates in Table 1

and Figure 4 in the main text (bold solid and dotted segments) are close to the means and

medians of the empirical coefficient distributions (leftmost panels). Models with the full set

of covariates (dotted segments) are almost identical to the mean and median estimates, and

models without covariates (bold solid segments) slightly underestimate (population growth

rate, Figure 4 in the main text) or overestimate (population in 2001 and 2020, Table 1 in

the main text) while some of he covariates can be seen as posttreatment or a “bad control.”

Combined, these results suggest that the covariate kink and the choice of covariate adjust-

ments are unlikely to affect the inference severely, and the main findings are unlikely to be

a product of arbitrary model picking or (observed) confounding nonlinearity.

C.2 Flight Buffer Width and Half-Decay Distance

Admittedly, the main RK estimates rely on an arbitrary combination of two parameters,

flight buffer width and half-decay distance, to obtain the RK sample and measure the

hamlet-level herbicide exposure score, HERB. As explained in Section 3 of the main text

and Section A.3, flight buffer width defines the sample hamlets used in the RK estimation,

and the half-decay distance parameter determines HERB (eq. 1 in the main text).

To examine the robustness to the particular parameter setting, Figure C.2 reestimates

the RK model with alternative parameter combinations. While the coefficient size varies,

the negative association between herbicide exposure and contemporary population outcomes

remains robust across different RK samples and distance-decay parameter values.

C.3 Counterinsurgency Strategy and Jackknife Estimates

A remaining but important concern for the current RK design is that the results might be

driven by unobserved confounding kink such as counterinsurgency strategies and authoriza-

tion procedure of herbicide missions. During the Vietnam War, the U.S. military divided
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Figure C.2: RK Estimates with Different Flight Buffer Width and Half-Decay Distance Settings

Notes : Symbols represent the second-stage RK estimates with different flight buffer widths (indicated by
symbols) and the half-decay distance parameter on the vertical axis, for each of the outcome variables in
the column labels. Horizontal segments display the 95% confidence intervals based on Conley (1999)
standard errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and
hamlet-level clustering for the panel setup. Red solid triangles with half-decay distance = 500 m indicate
the baseline estimates reported in Table 1 and Figure 4 in the main text. All estimates rely on the baseline
bandwidth of 4 km and the model specification of model (1) in Table 1. Panel specification further adjusts
for a year fixed effect.

South Vietnam into four Corps Tactical Zones (CTZs) commanded by different military

branches and implemented distinct counterinsurgency strategies in individual CTZs. Dell

and Querubin (2018, 51–54) exploit the CTZ I–II boundary as one of the sources for causal

identification, given the historical fact that the U.S. Marine Corps (USMC) in Corps Region

I implemented a moderate hearts-and-minds-oriented strategy and small-unit operations,

while the U.S. Army commanded Corps Region II and emphasized overwhelming firepower

and large-scale operations. Similarly, as briefly explained in the main text, the authoriza-

tion process of herbicide missions involved the South Vietnam Government, both at the

national and local levels, and the U.S. at the levels of the U.S. Ambassador, the commander

of the U.S. Military Assistance Command, Vietnam (MACV), and the CTZ commanders

(Buckingham, 1982, 37; Institute of Medicine, 1995, 86).

Although the baseline specification includes a district fixed effect, we rely on CTZ-level

and province-level jackknife approaches to more explicitly gauge the impact of the CTZs
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Figure C.3: Corps Tactical Zone-Level Jackknife

Notes : Symbols represent the RK estimates with subsamples dropping the hamlets in the Corps Tactical
Zone on the vertical axis. Horizontal segments display the corresponding 95% confidence intervals based on
standard errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and
hamlet-level clustering for the panel setup. All estimates rely on the baseline bandwidth of 4 km and the
specification of model (1) in Table 1. Panel specification further adjusts for a year fixed effect.

and corresponding differences in counterinsurgency strategies have on the reported RK es-

timates. Figure C.3 reports the jackknife estimates using a subsample dropping the hamlet

observations located in the CTZ on the vertical axis. As the CTZ boundaries follow the

preexisting provincial boundaries, and given the role of province chiefs in Ranch Hand mis-

sions, Figure C.4 presents a similar jackknife exercise in which hamlet observations in the

province on the vertical axis dropped from the subsample for RK estimate. While the sample

size and statistical significance vary, the negative coefficient estimates remain qualitatively

unchanged across subsamples.

C.4 Unobserved Confounding Forces and Sensitivity Analysis

We also use a sensitivity analysis approach to examine how sensitive the main findings

are to unobserved confounding nonlinearity. Table C.1 reports the reduced-form and first-

stage versions of the main RK specification in Table 1 in the main text. The robustness

values in each panel indicate the percentage of residual variance that unobserved confounders
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Figure C.4: Province-Level Jackknife

Notes : Symbols represent the RK estimates with subsamples dropping the hamlets in the province on the
vertical axis. Horizontal segments display the corresponding 95% confidence intervals based on standard
errors with a 30 km cutoff and a Bartlet kernel for the cross-sectional specification and hamlet-level
clustering for the panel setup. Triangles and vertical dashed segments indicate the baseline estimate in
Table 1 and Figure 4 in the main text. All estimates rely on the baseline bandwidth of 4 km and the model
specification of model (1) in Table 1. Panel specification further adjusts for a year fixed effect.

would need to explain to eliminate the kink estimates (Cinelli and Hazlett, 2020). For both

reduced-form and first-stage estimates, the robustness values suggest only implausibly strong

unobserved confounders are capable of eliminating the main RK estimates.9 More precisely,

the robustness values indicate that unobserved confounders would need to explain at least

16.59% (Model 4, Panel A) and 27.47% (Model 4, Panel B) of instrument (EdgeDist ×

9We report reduced-form and first-stage estimates as the robustness value measures the strength of
unobserved confounding by partial R2. Note also that the RK estimand, τRK, can be written as the ratio of
the reduced-form slope change (i.e., outcome slope change at the kink point) relative to the first-stage slope
change (i.e., treatment slope change at the kink point) as (Card et al., 2015b):

τRK =

(
limv0↓0 d(E[Y |V = v])

dv

∣∣∣∣
v=v0

−
limv0↑0 d(E[Y |V = v])

dv

∣∣∣∣
v=v0

)/(
limv0↓0 d(E[D|V = v])

dv

∣∣∣∣
v=v0

−
limv0↑0 d(E[D|V = v])

dv

∣∣∣∣
v=v0

)
,

where V denotes the running variable, v0 the kink point, and D the treatment. The reduced-form (first-stage)
robustness value can be interpreted as a sensitivity measurement for the numerator (denominator).
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Table C.1: Reduced-Form and First-Stage Estimates with Robustness Values

Panel A: ln Population (2020)

(1) (2) (3) (4) (5)

EdgeDist× 1[EdgeDist ≥ 0] 0.204∗∗∗ 0.174∗∗∗ 0.162∗∗∗ 0.161∗∗∗ 0.161∗∗∗

(0.053) (0.048) (0.045) (0.045) (0.045)
Robustness Value 17.79% 17.02% 16.85% 16.84% 16.88%
Adjusted R2 0.708 0.778 0.800 0.802 0.805

Panel B: ln HERB

(1) (2) (3) (4) (5)

EdgeDist× 1[EdgeDist ≥ 0] −0.693∗∗∗ −0.660∗∗∗ −0.629∗∗∗ −0.633∗∗∗ −0.632∗∗∗

(0.095) (0.089) (0.087) (0.086) (0.084)
Robustness Value 30.75% 31.36% 30.99% 31.64% 32.25%
Adjusted R2 0.620 0.652 0.663 0.666 0.677

Observations 522 522 522 522 522
Avg. N neighbors (Conley SE cluster size) 27.4 27.4 27.4 27.4 27.4
Key Target covariates ✓ ✓ ✓ ✓
Geographic covariates ✓ ✓ ✓
Historical covariates ✓ ✓
ln spatially-lagged HERB ✓
Fixed effects and f(Lon,Lat) ✓ ✓ ✓ ✓ ✓
Notes : ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Conley (1999) standard errors adjusted for spatial clustering
with a 30 km cutoff and a Bartlett kernel are in parentheses. Key target covariates: NVA base distance,
population (1967–1969), U.S. base distance, U.S. troop distance, rice cropland, road distance, slash and
burn cropland, Viet Cong control prevalence. Geographic covariates: Precipitation, wind speed, eleva-
tion, flow accumulation, forest presence, rice suitability, river distance, ruggedness. Historical covariates:
Bombing point distance, border distance, number of neighbor hamlets, railway distance. ln spatially-
lagged HERB is the logged average HERB among the neighbor hamlets with a 30 km cutoff. Fixed effects:
Agent fixed effect, district fixed effect, end-edge fixed effect, pre-1967 mission fixed effect. Robustness
values indicate the percentage of residual variance that unobserved confounders would need to explain in
order to eliminate the reported kink coefficients.

1[EdgeDist ≥ 0]) and left-hand-side variable (population 2020 in Panel A and lnHERB in

Panel B) residual variance to eliminate the RK estimates in Table 1 in the main text. Given

the battery of covariate adjustments in addition to the geocoordinate polynomial and fixed

effects, it is implausible that a (combination of) confounding kink is driving the finding.
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